In the beginning of 2023 the Be transient X-ray pulsar RX J0440.9+4431 underwent a first-ever giant outburst observed from the source peaking in the beginning of February and reaching peak luminosity of ≈4.3 × 1037 erg s−1. Here we present the results of a detailed spectral and temporal study of the source based on NuSTAR, Swift, INTEGRAL and NICER observations performed during this period and covering wide range of energies and luminosities. We find that both the pulse profile shape and spectral hardness change abruptly around ≈2.8 × 1037 erg s−1, which we associate with a transition to supercritical accretion regime and erection of the accretion column. The observed pulsed fraction decreases gradually with energy up to 20 keV (with a local minimum around fluorescence iron line), which is unusual for an X-ray pulsar, and then rises rapidly at higher energies with the pulsations significantly detected up to ≈120 keV. The broadband energy spectra of RX J0440.9+4431 at different luminosity states can be approximated with a two-hump model with peaks at energies of about 10–20 and 50–70 keV previously suggested for other pulsars without additional features. In particular an absorption feature around 30 keV previously reported and interpreted as a cyclotron line in the literature appears to be absent when using this model, so the question regarding the magnetic field strength of the neutron star remains open. Instead, we attempted to estimate field using several indirect methods and conclude that all of them point to a relatively strong field of around B ∼ 1013 G.
We report results of the first detailed spectral and temporal studies of the recently discovered Be/X-ray binary eRASSU J050810.4−660653 in LMC based on the data from the SRG/ART-XC, NuSTAR and Swift/XRT instruments obtained in December 2021 - May 2022 in a wide energy range of 0.5-79 keV. Pulsations with the period of 40.5781 ± 0.0004 s were found in the source light curve with the pulsed fraction monotonically increasing with the energy. An estimate of the orbital period of ∼38 days was obtained based on the long-term monitoring of the system. The source spectrum can be well approximated with a power-law model modified by an exponential cutoff at high energies. The pulse phase-resolved spectroscopy shows a strong variation of spectral parameters depending on the phase of a neutron star rotation. We have not found any features connected with the cyclotron absorption line both in the phase-averaged and phase-resolved spectra of eRASSU J050810.4−660653. However, the neutron star magnetic field was estimated around several 1013 G using different indirect methods. Discovered variations of the hardness ratio over the pulse phase is discussed in terms of physical and geometrical properties of the emitting region.
This work is devoted to the study of the broadband 0.8–79 keV spectral and timing properties of the poorly studied X-ray pulsar XTE J1859+083 during its 2015 outburst based on the data from the NuSTAR and Swift observatories. We show that the source pulse profile has complex shape that depends on the energy band. Pulse fraction of XTE J1859+083 has constant value around 35% in the broad energy band, this behaviour is atypical for X-ray pulsars. At the same time its energy spectrum is typical of this class of objects and has a power-law shape with an exponential cutoff at high energies. No cyclotron absorption line was discovered in the source spectrum. On the basis of indirect method and the absence of a cyclotron line, an estimation was made for the magnetic field strength as less than 5 × 1011 G or belonging to the interval from 5 × 1012 to $2.0^{+0.9}_{-1.2}\times 10^{13}$ G. Data from the NOT and SALT telescopes as well as optical and IR sky surveys allowed us also to study the nature of its optical companion. We have proposed and studied new possible candidates for the optical companion of XTE J1859+083 and the most likely candidate was identified. The results of the optical and IR photometry and spectroscopy of these possible companions showed that the system is a Be X-ray binary, showing Brγ, He i and strong Hα spectral lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.