Motivated from second-order stochastic dominance, we introduce a risk measure that we call shortfall. We examine shortfall's properties and discuss its relation to such commonly used risk measures as standard deviation, VaR, lower partial moments, and coherent risk measures. We show that the mean-shortfall optimization problem, unlike mean-VaR, can be solved e ciently as a convex optimization problem, while the sample mean-shortfall portfolio optimization problem can be solved very e ciently as a linear optimization problem. We provide empirical evidence (a) in asset allocation, and (b) in a problem of tracking an index using only a limited number of assets that the mean-shortfall approach might have advantages over mean-variance. ?
There exist several estimators of the memory parameter in long-memory time series models with the spectrum specified only locally near zero frequency. In this paper we give an asymptotic lower bound for the minimax risk of any estimator of the memory parameter as a function of the degree of local smoothness of the spectral density at zero. The lower bound allows one to evaluate and compare different estimators by their asymptotic behaviour, and to claim the rate optimality for any estimator attaining the bound. A log-periodogram regression estimator, analysed by Robinson (Log-periodogram regression of time series with long range dependence. Ann. Stat. 23 (1995), 1048-72), is then shown to attain the lower bound, and is thus rate optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.