Summary The present work aims to identify critical materials in water electrolysers with potential future supply constraints. The expected rise in demand for green hydrogen as well as the respective implications on material availability are assessed by conducting a case study for Germany. Furthermore, the recycling of end‐of‐life (EoL) electrolysers is evaluated concerning its potential in ensuring the sustainable supply of the considered materials. As critical materials bear the risk of raising production costs of electrolysers substantially, this article examines the readiness of this technology for industrialisation from a material perspective. Except for titanium, the indicators for each assessed material are scored with a moderate to high (platinum) or mostly high (iridium, scandium and yttrium) supply risk. Hence, the availability of these materials bears the risk of hampering the scale‐up of electrolysis capacity. Although conventional recycling pathways for platinum, iridium and titanium already exist, secondary material from EoL electrolysers will not reduce the dependence on primary resources significantly within the period under consideration—from 2020 until 2050. Notably, the materials identified as critical are used in PEM and high temperature electrolysis, whereas materials in alkaline electrolysis are not exposed to significant supply risks.
The growing share of renewable energy generation based on fluctuating wind and solar energy sources is increasingly challenging in terms of power grid stability. Industrial demand-side response presents a promising way to balance energy supply and consumption. For this, energy demand is flexibly adapted based on external incentives. Thus, companies can economically benefit and at the same time contribute to reducing greenhouse gas emissions. However, there are currently some major obstacles that impede industrial companies from taking part in the energy markets. A broad specification analysis systematically dismantles the existing barriers. On this foundation, a new end-to-end ecosystem of an energy synchronization platform is introduced. It consists of a business-individual company-side platform, where suitable services for energy-oriented manufacturing are offered. In addition, one market-side platform is established as a mediating service broker, which connects the companies to, e.g., third party service providers, energy suppliers, aggregators, and energy markets. The ecosystems aim at preventing vendor lock-in and providing a flexible solution, relying on open standards and offering an integrated solution through an end-to-end energy flexibility data model. In this article, the resulting functionalities are discussed and the remaining deficits outlined.
From the perspective of manufacturing companies, the political, media and economic discourse on decarbonisation in the recent years manifests itself as an increasing social expectation of action. In Germany, in particular, this discourse is also being driven forward by powerful companies, respectively sectors, most notably the automotive industry. Against this background, the present paper examines how German manufacturing companies react to rising societal pressure and emerging policies. It examines which measures the companies have taken or plan to take to reduce their carbon footprint, which aspirations are associated with this and the structural characteristics (company size, energy intensity, and sector) by which these are influenced. A mix methods approach is applied, utilising data gathered from approx. 900 companies in context of the Energy Efficiency Index of German Industry (EEI), along with media research focusing on the announced decarbonisation plans and initiatives. We demonstrate that one-size-serves-all approaches are not suitable to decarbonise industry, as the situation and ambitions differ considerably depending on size, energy intensity and sector. Even though the levels of ambition and urgency are high, micro and energy intensive companies, in particular, are challenged. The present research uncovers a series of questions that call for attention to materialise the ambitions and address the challenges outlined.
The greatest lever for advancing climate adaptation and mitigation is the defossilization of energy systems. A key opportunity to replace fossil fuels across sectors is the use of renewable hydrogen. In this context, the main political and social push is currently on climate neutral hydrogen (H2) production through electrolysis using renewable electricity. Another climate neutral possibility that has recently gained importance is biohydrogen production from biogenic residual and waste materials. This paper introduces for the first time a novel concept for the production of hydrogen with net negative emissions. The derived concept combines biohydrogen production using biotechnological or thermochemical processes with carbon dioxide (CO2) capture and storage. Various process combinations referred to this basic approach are defined as HyBECCS (Hydrogen Bioenergy with Carbon Capture and Storage) and described in this paper. The technical principles and resulting advantages of the novel concept are systematically derived and compared with other Negative Emission Technologies (NET). These include the high concentration and purity of the CO2 to be captured compared to Direct Air Carbon Capture (DAC) and Post-combustion Carbon Capture (PCC) as well as the emission-free use of hydrogen resulting in a higher possible CO2 capture rate compared to hydrocarbon-based biofuels generated with Bioenergy with Carbon Capture and Storage (BECCS) technologies. Further, the role of carbon-negative hydrogen in future energy systems is analyzed, taking into account key societal and technological drivers against the background of climate adaptation and mitigation. For this purpose, taking the example of the Federal Republic of Germany, the ecological impacts are estimated, and an economic assessment is made. For the production and use of carbon-negative hydrogen, a saving potential of 8.49–17.06 MtCO2,eq/a is estimated for the year 2030 in Germany. The production costs for carbon-negative hydrogen would have to be below 4.30 € per kg in a worst-case scenario and below 10.44 € in a best-case scenario in order to be competitive in Germany, taking into account hydrogen market forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.