β-carbonic anhydrases (βCA) accelerate the equilibrium formation between CO2 and carbonate. Two plant βCA isoforms are targeted to the chloroplast and represent abundant proteins in the range of >1% of chloroplast protein. While their function in gas exchange and photosynthesis is well-characterized in carbon concentrating mechanisms of cyanobacteria and plants with C4-photosynthesis, their function in plants with C3-photosynthesis is less clear. The presence of conserved and surface-exposed cysteinyl residues in the βCA-structure urged to the question whether βCA is subject to redox regulation. Activity measurements revealed reductive activation of βCA1, whereas oxidized βCA1 was inactive. Mutation of cysteinyl residues decreased βCA1 activity, in particular C280S, C167S, C230S, and C257S. High concentrations of dithiothreitol or low amounts of reduced thioredoxins (TRXs) activated oxidized βCA1. TRX-y1 and TRX-y2 most efficiently activated βCA1, followed by TRX-f1 and f2 and NADPH-dependent TRX reductase C (NTRC). High light irradiation did not enhance βCA activity in wildtype Arabidopsis, but surprisingly in βca1 knockout plants, indicating light-dependent regulation. The results assign a role of βCA within the thiol redox regulatory network of the chloroplast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.