The removal of 5‐methyl‐deoxycytidine (mdC) from promoter elements is associated with reactivation of the silenced corresponding genes. It takes place through an active demethylation process involving the oxidation of mdC to 5‐hydroxymethyl‐deoxycytidine (hmdC) and further on to 5‐formyl‐deoxycytidine (fdC) and 5‐carboxy‐deoxycytidine (cadC) with the help of α‐ketoglutarate‐dependent Tet oxygenases. The next step can occur through the action of a glycosylase (TDG), which cleaves fdC out of the genome for replacement by dC. A second pathway is proposed to involve C−C bond cleavage that converts fdC directly into dC. A 6‐aza‐5‐formyl‐deoxycytidine (a‐fdC) probe molecule was synthesized and fed to various somatic cell lines and induced mouse embryonic stem cells, together with a 2′‐fluorinated fdC analogue (F‐fdC). While deformylation of F‐fdC was clearly observed in vivo, it did not occur with a‐fdC, thus suggesting that the C−C bond‐cleaving deformylation is initiated by nucleophilic activation.
Queuosine (Q) is a hypermodified RNA nucleoside that is found in tRNAHis, tRNAAsn, tRNATyr, and tRNAAsp. It is located at the wobble position of the tRNA anticodon loop, where it can interact with U as well as C bases located at the respective position of the corresponding mRNA codons. In tRNATyr and tRNAAsp of higher eukaryotes, including humans, the Q base is for yet unknown reasons further modified by the addition of a galactose and a mannose sugar, respectively. The reason for this additional modification, and how the sugar modification is orchestrated with Q formation and insertion, is unknown. Here, we report a total synthesis of the hypermodified nucleoside galactosyl‐queuosine (galQ). The availability of the compound enabled us to study the absolute levels of the Q‐family nucleosides in six different organs of newborn and adult mice, and also in human cytosolic tRNA. Our synthesis now paves the way to a more detailed analysis of the biological function of the Q‐nucleoside family.
5-Formyl-deoxyuridine (fdU) and 5-formyl-deoxycytidine (fdC) are formyl-containing nucleosides that are created by oxidative stress in differentiated cells. While fdU is almost exclusively an oxidative stress lesion formed from deoxythymidine (T), the situation for fdC is more complex. Next to formation as an oxidative lesion, it is particularly abundant in stem cells, where it is more frequently formed in an epigenetically important oxidation reaction performed by α-ketoglutarate dependent TET enzymes from 5-methyldeoxycytidine (mdC). Recently, it was shown that genomic fdC and fdU can react with the ɛ-aminogroups of nucleosomal lysines to give Schiff base adducts that covalently link nucleosomes to genomic DNA. Here, we show that fdU features a significantly higher reactivity towards lysine side chains compared with fdC. This result shows that depending on the amounts of fdC and fdU, oxidative stress may have a bigger impact on nucleosome binding than epigenetics.
5‐Methyl‐2′‐Desoxycytidin (mdC) wird als fünfte Base des genetischen Systems betrachtet, dessen Anwesenheit zur Unterdrückung der Expression korrespondierender Gene beiträgt. Die Entfernung der Modifikation und Reaktivierung der unterdrückten Gene ist durch einen noch nicht vollständig aufgeklärten aktiven Demethylierungsmechanismus möglich. Dieser setzt die Oxidationsreaktionen von mdC zum 5‐Hydroxymethyl‐2′‐Desoxycytidin (hmdC) und weiter zum 5‐Formyl‐2′‐Desoxycytidin (fdC) und 5‐Carboxy‐2′‐Desoxycytidin (cadC) voraus, die durch α‐Ketoglutarat‐abhängige Tet‐Oxygenasen katalysiert werden. Die Entfernung von mdC geschieht auf den Oxidationsstufen des fdC und cadC. Neben dem Eingreifen bestimmter Glykosylasen (TDG) beschreibt ein zweiter Weg eine C‐C‐Bindungsspaltung, die fdC direkt in dC umwandelt. Während der TDG‐induzierte Reparaturmechanismus gut charakterisiert ist, existieren zum Mechanismus durch C‐C‐Bindungsbruch noch sehr wenige Informationen. Hier führen wir ein neuartiges 6‐Aza‐5‐Formyl‐2′‐Desoxycytidin‐Testmolekül (a‐fdC) ein, das verschiedenen somatischen Zelllinien und induzierten mESCs zusammen mit einem 2′‐fluorierten fdC‐Analogon (F‐fdC) gefüttert wurde. Während die Deformylierung von F‐fdC in vivo eindeutig beobachtet werden konnte, wurde sie für a‐fdC hingegen nicht beobachtet, was vermuten lässt, dass die Deformylierung über C‐C‐Bindungsbruch nach vorhergehender nukleophiler Aktivierung erfolgt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.