The Stanley controller is a proven approach for path tracking control in automated vehicles. If time delays occur, for example, in signal processing and steering angle control, precision and stability decrease. In this article, enhancements for the Stanley controller are proposed to achieve stable behavior with improved tracking accuracy. The approach uses the curvature of the path as feedforward, whereby the reference point for the feedforward input differs from that of the controller setpoints. By choosing a point further along the path, the negative effects of system delay are reduced. First, the parameters of the Stanley controller are calibrated using a straight line and circle maneuver. Then, the newly introduced feedforward parameter is optimized on a dynamic circuit. The approach was evaluated in simulation and validated on a demonstrator vehicle. The validation tests with the demonstrator vehicle on the dynamic circuit revealed a reduction of the root-mean-square cross-track error from 0.11 m to 0.03 m compared to the Stanley controller. We proved that the proposed approach optimizes the Stanley controller in terms of compensating for the negative effects of system delay. This allows it to be used in a wider range of applications that would otherwise require a more complex control approach.
In articulated vehicles steering is accomplished by adjusting the articulation angle. Commonly a steering actuator is used to pivot the two vehicle sections. This actuator can be dispensed with if the pivoting is controlled by selective distribution of the drive torques to the individually driven wheels instead. Since steering is a safety-critical function, it must be ensured even if one of the drive motors fails. For this purpose, we propose a control method for a fault-tolerant four wheel independently driven articulated vehicle. The control method was developed and tested in a simulation environment and validated on a 1:5 scale demonstrator vehicle. The proposed method with constrained control allocation maintains the desired velocity and articulation angle by distributing the driving torques to the four wheels considering the current actuator limits. Both the simulation and the vehicle tests show that the control method meets the control objectives even when a sudden actuator limit occurs during critical driving scenarios like cornering. Thus, the vehicle can keep its maneuverability in the event of a detected failure of a drive motor. Together with reliable failure detection, the proposed approach provides a basis for further development towards innovative fault-tolerant electric articulated vehicles that meet the requirements of functional safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.