Parallelization of large-scale computational applications leads to the following challenges a programmer will face: the growing amount of modularity, dynamic application functionality and multilingual source code. In general program transformation is essential for program parallelization. However, manual program transformation is not straightforward in the case of a large amount of code. The growing size of code drastically complicates the main stages of the parallel programming: distribution of data on the processors and mapping of computations on the processors. Therefore, the incremental or step-by-step parallelization mode was introduced in SAPFOR system [1,2] to map sequential large-scale applications to parallel architectures with distributed memory. In addition, special attention was directed to the automatic finding the required transformations of the sequential program. SAPFOR also relies on the automatic execution of the found transformations. However, the three main challenges mentioned above also require their solution. This paper discusses possible ways to overcome these problems.
Аннотация. DVM-система предназначена для разработки параллельных программ научно-технических расчетов на языках C-DVMH и Fortran-DVMH. Эти языки используют единую модель параллельного программирования (DVMH-модель) и являются расширением стандартных языков Си и Фортран спецификациями параллелизма, оформленными в виде директив компилятору. DVMH-модель позволяет создавать эффективные параллельные программы для гибридных вычислительных кластеров. В статье представлены новые возможности DVM-системы, которые позволяют отображать существующие MPI-программы на кластеры, в узлах которых в качестве вычислительных устройств наряду с универсальными многоядерными процессорами могут использоваться графические ускорители.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.