Electrochemical aptamer-based (E-AB) sensors achieve highly precise measurements of specific molecular targets in untreated biological fluids. This unique ability, together with their measurement frequency of seconds or faster, has enabled the real-time monitoring of drug pharmacokinetics in live animals with unprecedented temporal resolution. However, one important weakness of E-AB sensors is that their bioelectronic interface degrades upon continuous electrochemical interrogationa process typically seen as a drop in faradaic and an increase in charging currents over time. This progressive degradation limits their in vivo operational life to 12 h at best, a period that is much shorter than the elimination half-life of the vast majority of drugs in humans. Thus, there is a critical need to develop novel E-AB interfaces that resist continuous electrochemical interrogation in biological fluids for prolonged periods. In response, our group is pursuing the development of better packed, more stable self-assembled monolayers (SAMs) to improve the signaling and extend the operational life of in vivo E-AB sensors from hours to days. By invoking hydrophobicity arguments, we have created SAMs that do not desorb from the electrode surface in aqueous physiological solutions and biological fluids. These SAMs, formed from 1-hexanethiol solutions, decrease the voltammetric charging currents of E-AB sensors by 3-fold relative to standard monolayers of 6-mercapto-1hexanol, increase the total faradaic current, and alter the electron transfer kinetics of the platform. Moreover, the stability of our new SAMs enables uninterrupted, continuous E-AB interrogation for several days in biological fluids, like undiluted serum, at a physiological temperature of 37 °C.
The ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays. Yet, benchmark microneedle sensors can only detect molecules that undergo redox reactions, which limits the ability to sense metabolites, biomarkers, and therapeutics that are not redox-active. To overcome this barrier, here, we expand the scope of these devices by demonstrating the first use of microneedlesupported electrochemical, aptamer-based (E-AB) sensors. This platform achieves molecular recognition based on affinity interactions, vastly expanding the scope of molecules that can be sensed. We report the fabrication of microneedle E-AB sensor arrays and a method to regenerate them for multiple uses. In addition, we demonstrate continuous molecular measurements using these sensors in flow systems in vitro using single and multiplexed microneedle array configurations. Translation of the platform to in vivo measurements is possible as we demonstrate with a first E-AB measurement in the ISF of a rodent. The encouraging results reported in this work should serve as the basis for future translation of microneedle E-AB sensor arrays to biomedical research in preclinical animal models.
The desire to improve and decentralize diagnostic platforms to facilitate highly precise and personalized medicine has motivated the development of a large number of electrochemical sensing technologies. Such a development has been facilitated by electrochemistry's unparalleled ability to achieve highly specific molecular measurements in complex biological fluids, without the need for expensive instrumentation. However, for decades, progress in the field had been constrained to systems that depended on the chemical reactivity of the analyte, obstructing the generalizability of such platforms beyond redox- or enzymatically active clinical targets. Thus, the pursuit of alternative, more general strategies, coupled to the timely technological advances in DNA sequencing, led to the development of DNA-based electrochemical sensors. The analytical value of these arises from the structural customizability of DNA and its ability to bind analytes ranging from ions and small molecules to whole proteins and cells. This versatility extends to interrogation methods, as DNA-based sensors work through a variety of detection schemes that can be probed via many electroanalytical techniques. As a reference for those experienced in the field, and to guide the unexperienced scientist, here we review the specific advantages of the electroanalytical methods most commonly used for the interrogation of DNA-based sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.