Summary A modification of the Roe scheme called L2Roe for low dissipation low Mach Roe is presented. It reduces the dissipation of kinetic energy at the highest resolved wave numbers in a low Mach number test case of decaying isotropic turbulence. This is achieved by scaling the jumps in all discrete velocity components within the numerical flux function. An asymptotic analysis is used to show the correct pressure scaling at low Mach numbers and to identify the reduced numerical dissipation in that regime. Furthermore, the analysis allows a comparison with two other schemes that employ different scaling of discrete velocity jumps, namely, LMRoe and a method of Thornber et al. To this end, we present for the first time an asymptotic analysis of the last method. Numerical tests on cases ranging from low Mach number (M∞=0.001) to hypersonic (M∞=5) viscous flows are used to illustrate the differences between the methods and to show the correct behavior of L2Roe. No conflict is observed between the reduced numerical dissipation and the accuracy or stability of the scheme in any of the investigated test cases. Copyright © 2015 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.