We propose a generic Bayesian framework for inference in distributional regression models in which each parameter of a potentially complex response distribution and not only the mean is related to a structured additive predictor. The latter is composed additively of a variety of different functional effect types such as nonlinear effects, spatial effects, random coefficients, interaction surfaces or other (possibly nonstandard) basis function representations. To enforce specific properties of the functional effects such as smoothness, informative multivariate Gaussian priors are assigned to the basis function coefficients. Inference can then be based on computationally efficient Markov chain Monte Carlo simulation techniques where a generic procedure makes use of distribution-specific iteratively weighted least squares approximations to the full conditionals. The framework of distributional regression encompasses many special cases relevant for treating nonstandard response structures such as highly skewed nonnegative responses, overdispersed and zero-inflated counts or shares including the possibility for zero-and one-inflation. We discuss distributional regression along a study on determinants of labour incomes for full-time working males in Germany with a particular focus on regional differences after the German reunification. Controlling for age, education, work experience and local disparities, we estimate full conditional income distributions allowing us to study various distributional quantities such as moments, quantiles or inequality measures in a consistent manner in one joint model. Detailed guidance
Hidden Markov models (HMMs) are flexible time series models in which the distributions of the observations depend on unobserved serially correlated states. The statedependent distributions in HMMs are usually taken from some class of parametrically specified distributions. The choice of this class can be difficult, and an unfortunate choice can have serious consequences for example on state estimates, on forecasts and generally on the resulting model complexity and interpretation, in particular with respect to the number of states. We develop a novel approach for estimating the statedependent distributions of an HMM in a nonparametric way, which is based on the idea of representing the corresponding densities as linear combinations of a large number of standardized B-spline basis functions, imposing a penalty term on non-smoothness in order to maintain a good balance between goodness-of-fit and smoothness. We illustrate the nonparametric modeling approach in a real data application concerned with vertical speeds of a diving beaked whale, demonstrating that compared to parametric counterparts it can lead to models that are more parsimonious in terms of the number of states yet fit the data equally well.
An SDQ-screening of children and adolescents may help for early detection, prediction and treatment planning. Also, these results may contribute to a better understanding of the course of mental health problems in childhood and concurrently may allow a better psychoeducation and prevention.
Stochastic volatility (SV) models mimic many of the stylized facts attributed to time series of asset returns, while maintaining conceptual simplicity. The commonly made assumption of conditionally normally distributed or Student-t-distributed returns, given the volatility, has however been questioned. In this manuscript, we introduce a novel maximum penalized likelihood approach for estimating the conditional distribution in an SV model in a nonparametric way, thus avoiding any potentially critical assumptions on the shape. The considered framework exploits the strengths both of the powerful hidden Markov model machinery and of penalized B-splines, and constitutes a powerful and flexible alternative to recently developed Bayesian approaches to semiparametric SV modelling. We demonstrate the feasibility of the approach in a simulation study before outlining its potential in applications to three series of returns on stocks and one series of stock index returns.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. In this paper we explore the application of Generalised Additive Models of Location, Scale and Shape for the analysis of conditional income distributions in Germany following the reunification. We find that conditional income distributions can generally be modelled using the three parameter Dagum distribution and our results hint at an even more pronounced effect of skill-biased technological change than can be observed by standard mean regression. Terms of use: Documents in EconStor may
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.