Automatic detection of pulmonary nodules in thoracic computed tomography (CT) scans has been an active area of research for the last two decades. However, there have only been few studies that provide a comparative performance evaluation of different systems on a common database. We have therefore set up the LUNA16 challenge, an objective evaluation framework for automatic nodule detection algorithms using the largest publicly available reference database of chest CT scans, the LIDC-IDRI data set. In LUNA16, participants develop their algorithm and upload their predictions on 888 CT scans in one of the two tracks: 1) the complete nodule detection track where a complete CAD system should be developed, or 2) the false positive reduction track where a provided set of nodule candidates should be classified. This paper describes the setup of LUNA16 and presents the results of the challenge so far. Moreover, the impact of combining individual systems on the detection performance was also investigated. It was observed that the leading solutions employed convolutional networks and used the provided set of nodule candidates. The combination of these solutions achieved an excellent sensitivity of over 95% at fewer than 1.0 false positives per scan. This highlights the potential of combining algorithms to improve the detection performance. Our observer study with four expert readers has shown that the best system detects nodules that were missed by expert readers who originally annotated the LIDC-IDRI data. We released this set of additional nodules for further development of CAD systems.
Venous refilling time (VRT) can diagnose the presence of venous diseases in lower limbs. In order to calculate VRT it is necessary to determine the End of the Emptying Maneuvers (EEM). First Derivative Method (FDM) can be employed for automatic detection of the EEM, but its sensitivity to artifacts and noise can degrade its performance. In contrast, studies report that Area Triangulation Method (ATM) evinces effectiveness in biosignals point finding. This work compares the exactness of ATM and FDM for recognition of the EEM. The annotations made by 3 trained human observers on 37 photoplethysmography records were used as a reference. Bland-Altman graphics supported the analysis of agreement among human observers and methods, which was complemented with Analysis of variance and Multiple Comparisons statistical tests. Results showed that ATM is more accurate than FDM for automatic detection of the EEM, with statistically significant differences (p-value < 0.01).
Las enfermedades cardiovasculares (ECV) cobran la vida de cerca de 18 millones de personas cada año, constituyendo la principal causa de muerte e incapacidad en el mundo. Entre las enfermedades cardiovasculares, las arritmias cardiacas son las más comunes. Desde hace varios años, nuevos estudios han destacado las potencialidades de la onda fotopletismográfica para detectar arritmias, superando en sencillez y reducción de costos a la electrocardiografía (ECG). En este estudio se propone un método de detección de picos sistólicos de la onda fotopletismográfica para determinar la frecuencia cardiaca y con ello establecer la presencia de taquicardia, bradicardia o asístole. El método de detección de picos sistólicos calcula la primera derivada de la señal previamente filtrada. A continuación aplica un proceso de umbralización. Finalmente, en una etapa de agrupamiento se emplea el algoritmo DBSCAN. El algoritmo de detección de picos fue evaluado en 42 señales de una base de datos internacional multiparamétrica para la estimación del RR. La evaluación del método mostró alta exactitud y precisión (0±2 ms) y una sensibilidad y valor predictivo positivo del 99 %. Estos resultados permiten determinar la frecuencia cardiaca con una exactitud y precisión de 0±1 latido por minuto. Además, este algoritmo es evaluado en clasificación de arritmias utilizando 155 señales de la base de datos del PhysioNet/Computing in Cardiology Challenge del 2015. Para esta evaluación el algoritmo mostró resultados aceptables en la detección de asístole, bradicardia y taquicardia. La sensibilidad y el valor predictivo positivo fue del 79% y 88% para asístole, 74% y 64% para bradicardia y, 80% y 99% para taquicardia respectivamente. La efectividad del método puede afectarse en registros de señales con grandes variaciones de amplitud y/o con relaciones señal-ruido (SNR) bajas. No obstante, los resultados en estas condiciones son aceptables y son muy buenos en señales de alto SNR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.