vLUME is a virtual reality software package designed to render large three-dimensional single-molecule localization microscopy datasets. vLUME features include visualization, segmentation, bespoke analysis of complex local geometries and exporting features. vLUME can perform complex analysis on real three-dimensional biological samples that would otherwise be impossible by using regular flat-screen visualization programs.Super-resolution microscopy based on three-dimensional single-molecule localization microscopy (3D-SMLM) is now well established 1,2 , and its widespread adoption has led to the development of more than 36 software packages dedicated to quantitative evaluation of the spatial and temporal detection of fluorophore photoswitching 3 . While the initial emphasis in the 3D-SMLM field has clearly been on improving resolution and data quality, there is now a marked absence of 3D visualization approaches that enable the straightforward, high-fidelity exploration of this type of data. Inspired by the horological phosphorescence points that illuminate watch-faces in the dark, we present vLUME (visualization of the local universe in a micro environment, pronounced 'volume'), an immersive virtual reality (VR)-based visualization software package purposefully designed to render large 3D-SMLM datasets. It is free for academic use. vLUME enables robust visualization, segmentation, annotation and quantification of millions of fluorescence puncta from any 3D-SMLM technique. vLUME has an intuitive user interface and is compatible with all commercial gaming VR hardware (Oculus Rift/Rift S and HTC Vive/Vive Pro; Supplementary Video 1). Although other microscopy data (that is, confocal) visualization tools have previously explored VR technology using volumetric representations 4,5 , vLUME has been specifically and purposefully created for SMLM. It accelerates the analysis of highly complex 3D point-cloud data and the rapid identification of defects that are otherwise neglected in global quality metrics. (A comparison with other VR and non-VR tools can be found in Supplementary Table 1.)vLUME is a point-cloud based 3D-SMLM data visualization tool able to render all pointillism-based multidimensional datasets. It differs from other 3D tools for 3D-SMLM visualization such as ViSP 6 by providing a complete VR interactive environment and intuitive interface for life scientists, dedicated to data visualization, segmentation and analysis. Users load multidimensional particle-list datasets into vLUME (.csv files; Fig. 1a), such as those generated by commonly used 3D-SMLM software 7,8 . This allows users to comprehend the spatial and temporal relation between
Super-Resolution (SR) Microscopy based on 3D Single-Molecule Localization Microscopy (SMLM) is now well established 1,2 and its wide-spread adoption has led to the development of more than 36 software packages, dedicated to quantitative evaluation of the spatial and temporal detection of fluorophore photoswitching 3 . While the initial emphasis in the 3D SMLM field has clearly been on improving resolution and data quality, there is now a marked absence of 3D visualization approaches that enable the straightforward, highfidelity exploration of this type of data. Inspired by the horological phosphorescence points that illuminate watch-faces in the dark, we present vLUME (Visualization of the Universe in a Micro Environment, pronounced 'volume') a free-for-academic-use immersive virtual reality-based (VR) visualization software package purposefully designed to render large 3D-SMLM data sets. vLUME enables robust visualization, segmentation and quantification of millions of fluorescence puncta from any 3D SMLM technique. vLUME has an intuitive user-interface and is compatible with all commercial VR hardware (Oculus Rift/Quest and HTC Vive, Supplementary Video 1). vLUME accelerates the analysis of highly complex 3D point-cloud data and the rapid identification of defects that are otherwise neglected in global quality metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.