In many instances during development, morphogens specify cell fates by forming concentration gradients. In the Drosophila melanogaster wing imaginal disc, Decapentaplegic (Dpp), a bone morphogenetic protein (BMP), functions as a long-range morphogen to control patterning and growth. Dpp is secreted from a stripe of cells at the anterior-posterior compartment boundary and spreads into both compartments to generate a characteristic BMP activity gradient. Ever since the identification of the morphogen activity of Dpp in the developing wing, the system has served as a paradigm to understand how long-range gradients are established and how cells respond to such gradients. Here we reveal the tight and direct connection of these two processes with the identification and characterization of pentagone (pent), a transcriptional target of BMP signalling encoding a secreted regulator of the pathway. Absence of pent in the wing disc causes a severe contraction of the BMP activity gradient resulting in patterning and growth defects. We show that Pent interacts with the glypican Dally to control Dpp distribution and provide evidence that proper establishment of the BMP morphogen gradient requires the inbuilt feedback loop embodied by Pent.
Autophagy can degrade cargos with the help of selective autophagy receptors such as p62/SQSTM1, which facilitates the degradation of ubiquitinated cargo. While the process of autophagy has been linked to aging, the impact of selective autophagy in lifespan regulation remains unclear. We have recently shown in Caenorhabditis elegans that transcript levels of sqst-1/p62 increase upon a hormetic heat shock, suggesting a role of SQST-1/p62 in stress response and aging. Here, we find that sqst-1/p62 is required for hormetic benefits of heat shock, including longevity, improved neuronal proteostasis, and autophagy induction. Furthermore, overexpression of SQST-1/p62 is sufficient to induce autophagy in distinct tissues, extend lifespan, and improve the fitness of mutants with defects in proteostasis in an autophagy-dependent manner. Collectively, these findings illustrate that increased expression of a selective autophagy receptor is sufficient to induce autophagy, enhance proteostasis and extend longevity, and demonstrate an important role for sqst-1/p62 in proteotoxic stress responses.
Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated.DOI: http://dx.doi.org/10.7554/eLife.13301.001
Introductory The maintenance of proteostasis is crucial for any organism to survive and reproduce in an ever-changing environment, but its efficiency declines with age1. Posttranscriptional regulators such as microRNAs control protein translation of target mRNAs with major consequences for development, physiology, and longevity2,3. Here we show that food odor stimulates organismal proteostasis and promotes longevity in Caenorhabditis elegans through mir-71-mediated inhibition of tir-1 mRNA stability in olfactory AWC neurons. Screening a collection of microRNAs that control aging3 we find that miRNA mir-71 regulates lifespan and promotes ubiquitin-dependent protein turnover, particularly in the intestine. We show that mir-71 directly inhibits the toll receptor domain protein TIR-1 in AWC olfactory neurons and that disruption of mir-71/tir-1 or loss of AWC olfactory neurons eliminates the influence of food source on proteostasis. mir-71-mediated regulation of TIR-1 controls chemotactic behavior and is regulated by odor. Thus, odor perception influences cell-type specific miRNA-target interaction to regulate organismal proteostasis and longevity. We anticipate that the proposed mechanism of food perception will stimulate further research on neuroendocrine brain-to-gut communication and may open the possibility for therapeutic interventions to improve proteostasis and organismal health via the sense of smell, with potential implication for obesity, diabetes and aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.