Silicon interposers enable the heterogeneous integration of high performance systems. This paper focuses on interconnections from one chip to a neighboring chip in a side-by-side interposer approach. We investigate the performance of interconnections on a typical silicon interposer with polymer applied to the redistribution layer on both sides using electromagnetic simulations. The simulations are valued by measurements. Our measurements show that microstrip lines with <0.3 dB/mm insertion loss at 30 GHz can be achieved with a typical polymer based interposer process. In contrast to other work we extend the microstrip line model with pads on both ends to form a complete interconnection. Our investigations show that an insertion loss of <0.55 dB/mm can be achieved assuming dense inter-connections. We investigate the impact of technological variations during the manufacturing process of a silicon interposer. This is important to ensure electrical functionality (signal and power integrity) of the system in mass production. The results on technology variations during the manufacturing process of an interposer show that variations of 20 % in trace width and trace height are changing the characteristic impedance of the line, but do not significantly affect the signal integrity of sufficiently long lines. In contrast, variations of 20 % in polymer height and polymer permittivity in the redistribution layer have more influence on signal integrity of sufficiently long interposer interconnections
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.