We stably transfected human kidney embryonic 293 cells with the rat neuronal nicotinic acetylcholine receptor (nAChR) alpha3 and beta4 subunit genes. This new cell line, KXalpha3 beta4R2, expresses a high level of the alpha3/beta4 receptor subtype, which binds (+/-)- [3H]epibatidine with a Kd value of 304+/-16 pM and a Bmax value of 8942 +/- 115 fmol/mg protein. Comparison of nicotinic drugs in competing for alpha3/beta4 receptor binding sites in this cell line and the binding sites in rat forebrain (predominantly alpha4/beta2 receptors) revealed marked differences in their Ki values, but similar rank orders of potency for agonists were observed, with the exception of anatoxin-A. The affinity of the competitive antagonist dihydro-beta-erythroidine is >7000 times higher at alpha4/beta2 receptors in rat forebrain than at the alpha3/beta4 receptors in these cells. The alpha3/beta4 nAChRs expressed in this cell line are functional, and in response to nicotinic agonists, 86Rb+ efflux was increased to levels 8-10 times the basal levels. Acetylcholine, (-)-nicotine, cytisine, carbachol, and (+/-)-epibatidine all stimulated 86Rb+ efflux, which was blocked by mecamylamine. The EC50 values for acetylcholine and (-)-nicotine to stimulate 86Rb+ effluxes were 114 +/- 24 and 28 +/- 4 microM, respectively. The rank order of potency of nicotinic antagonists in blocking the function of this alpha3/beta4 receptor was mecamylamine > d-tubocurarine > dihydro-beta-erythroidine > hexamethonium. Mecamylamine, d-tubocurarine, and hexamethonium blocked the function by a noncompetitive mechanism, whereas dihydro-beta-erythroidine blocked the function competitively. The KXalpha3 beta4R2 cell line should prove to be a very useful model for studying this subtype of nAChRs.
Abstract:In previous studies, we demonstrated that the neuropeptide, N-acetylaspartylglutamate (NAAG), meets the traditional criteria for a neurotransmitter and selectively activates metabotropic glutamate receptor mGluR2 or mGluR3 in cultured cerebellar granule cells and glia. Sequence homology and pharmacological data suggest that these two receptors are highly related structurally and functionally. To define more rigorously the receptor specificity of NAAG, cloned rat cDNAs for mGluRi-6 were transiently or stably transfected into Chinese hamster ovary cells and human embryonic kidney cells and assayed for their second messenger responses to the two endogenous neurotransmitters, glutamate and NAAG, as well as to metabotropic receptor agonists, trans-i -aminocyclopentane-1,3-dicarboxylate (trans-ACPD) and L-2-amino-4-phosphonobutyrate (L-AP4). Despite the high degree of relatedness of mGluR2 and mGluR3, NAAG selectively activated the mGluR3 receptor. NAAG activated neither mGluR2 nor mGluRi, mGluR4, mGluR5, or mGluR6. The mGluR agonist, trans-ACPD, activated each of the transfected receptors, whereas L-AP4 activated mGluR4 and mGluR6, consistent with the published selectivity of these agonists. Hybrid cDNA constructs of the extracellular domains of mGluR2 and mGluR3 were independently fused with the transmembrane and cytoplasmic domain of mGluRl a. This latter receptor domain is coupled to phosphoinositol turnover, and its activation increases intracellular calcium. The cells transfected with these chimeric receptors responded to activation by glutamate and trans-ACPD with increases in intracellular calcium. NAAG activated the chimeric receptor that contained the extracellular domain of mGluR3 and did not activate the mGluR2 chimera. Key Words: Metabotropic glutamate receptors-Glutamate-N-Acetylaspartylglutamate-Cyclic AMP-mGluR3 agonist-Neuropeptide-Chimeric receptors. J. Neurochem. 69, i74-181 (1997).A Series of structurally related metabotropic glutamate receptors (mGluRs) have been cloned, characterized, and classified within one of three groups based on sequence homology and pharmacology (Houamed et al., 1991;Masu et al., 1991;Abe et al., 1992;pin et al., 1992, 1996 Tanabe et al., 1992; Minakami et al., 1993; Nakajima eta!., 1993; Thomsen et al., 1993; Okamoto et al., 1994;Saugstad et al., 1994;Duvoisin et al., 1995;Pin and Duvoisin, 1995; Kubokawa Ct a!., 1996). Cloned group I receptors (mUluR I and mGluR5) are coupled via phosphoinositide (PT) turnover to phospholipase C and activated by quisqualate, ibotenate, and (S)-3,5-dihydroxyphenylglycine. Cloned group II receptors (mGluR2 and mGluR3) are activated most effectively by (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylic acid (APDC), trans-i -aminocyclopentane-I ,3-dicarboxylate (trans-ACPD), and (2S,1 'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl )glycine (DCG-IV), whereas L-2-amirlo-4-phosphonobutyrate (L-AP4) and O-phosphono-Lserine are selective agonists for group III receptors (mGluR4, mGluR6, mGluR7, and mGluR8). Group I! and III receptor activation ...
Glutamate excitotoxicity is implicated in the pathogenesis of numerous diseases, such as stroke, traumatic brain injury, and Alzheimer’s disease, for which insulin resistance is a concomitant condition, and intranasal insulin treatment is believed to be a promising therapy. Excitotoxicity is initiated primarily by the sustained stimulation of ionotropic glutamate receptors and leads to a rise in intracellular Ca2+ ([Ca2+]i), followed by a cascade of intracellular events, such as delayed calcium deregulation (DCD), mitochondrial depolarization, adenosine triphosphate (ATP) depletion that collectively end in cell death. Therefore, cross-talk between insulin and glutamate signaling in excitotoxicity is of particular interest for research. In the present study, we investigated the effects of short-term insulin exposure on the dynamics of [Ca2+]i and mitochondrial potential in cultured rat cortical neurons during glutamate excitotoxicity. We found that insulin ameliorated the glutamate-evoked rise of [Ca2+]i and prevented the onset of DCD, the postulated point-of-no-return in excitotoxicity. Additionally, insulin significantly improved the glutamate-induced drop in mitochondrial potential, ATP depletion, and depletion of brain-derived neurotrophic factor (BDNF), which is a critical neuroprotector in excitotoxicity. Also, insulin improved oxygen consumption rates, maximal respiration, and spare respiratory capacity in neurons exposed to glutamate, as well as the viability of cells in the MTT assay. In conclusion, the short-term insulin exposure in our experiments was evidently a protective treatment against excitotoxicity, in a sharp contrast to chronic insulin exposure causal to neuronal insulin resistance, the adverse factor in excitotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.