The binaural interaction component (BIC) of the auditory brainstem response is a noninvasive electroencephalographic signature of neural processing of binaural sounds. Despite its potential as a clinical biomarker, the neural structures and mechanism that generate the BIC are not known. We explore here the hypothesis that the BIC emerges from excitatory-inhibitory interactions in auditory brainstem neurons. We measured the BIC in response to click stimuli while varying interaural time differences (ITDs) in subjects of either sex from five animal species. Species had head sizes spanning a 3.5-fold range and correspondingly large variations in the sizes of the auditory brainstem nuclei known to process binaural sounds [the medial superior olive (MSO) and the lateral superior olive (LSO)]. The BIC was reliably elicited in all species, including those that have small or inexistent MSOs. In addition, the range of ITDs where BIC was elicited was independent of animal species, suggesting that the BIC is not a reflection of the processing of ITDs per se. Finally, we provide a model of the amplitude and latency of the BIC peak, which is based on excitatory-inhibitory synaptic interactions, without assuming any specific arrangement of delay lines. Our results show that the BIC is preserved across species ranging from mice to humans. We argue that this is the result of generic excitatory-inhibitory synaptic interactions at the level of the LSO, and thus best seen as reflecting the integration of binaural inputs as opposed to their spatial properties. Noninvasive electrophysiological measures of sensory system activity are critical for the objective clinical diagnosis of human sensory processing deficits. The binaural component of sound-evoked auditory brainstem responses is one such measure of binaural auditory coding fidelity in the early stages of the auditory system. Yet, the precise neurons that lead to this evoked potential are not fully understood. This paper provides a comparative study of this potential in different mammals and shows that it is preserved across species, from mice to men, despite large variations in morphology and neuroanatomy. Our results confirm its relevance to the assessment of binaural hearing integrity in humans and demonstrates how it can be used to bridge the gap between rodent models and humans.
The auditory brainstem response (ABR) is a sound-evoked non-invasively measured electrical potential representing the sum of neuronal activity in the auditory brainstem and midbrain. ABR peak amplitudes and latencies are widely used in human and animal auditory research and for clinical screening. The binaural interaction component (BIC) of the ABR stands for the difference between the sum of the monaural ABRs and the ABR obtained with binaural stimulation. The BIC comprises a series of distinct waves, the largest of which (DN1) has been used for evaluating binaural hearing in both normal hearing and hearing-impaired listeners. Based on data from animal and human studies, we discuss the possible anatomical and physiological bases of the BIC (DN1 in particular). The effects of electrode placement and stimulus characteristics on the binaurally evoked ABR are evaluated. We review how inter-aural time and intensity differences affect the BIC and, analyzing these dependencies, draw conclusion about the mechanism underlying the generation of the BIC. Finally, the utility of the BIC for clinical diagnoses are summarized.
The binaural interaction component (BIC) is the residual auditory brainstem response (ABR) obtained after subtracting the sum of monaurally-evoked from binaurally-evoked ABRs. The DN1 peak — the first negative peak of the BIC — has been postulated to have diagnostic value as a biomarker for binaural hearing abilities. Indeed, not only do DN1 amplitudes depend systematically upon binaural cues to location (interaural time and level differences) but they are also predictive of central hearing deficits in humans. A prominent issue in using BIC measures as a diagnostic biomarker is that DN1 amplitudes not only exhibit considerable variability across subjects, but also within subjects across different measurement sessions. Here we investigate the DN1 amplitude measurement reliability by conducting repeated measurements on different days in eight adult guinea pigs. Despite consistent ABR thresholds, ABR and DN1 amplitudes varied between and within subjects across recording sessions. However, our analysis reveals that DN1 amplitudes varied proportionally with parent monaural ABR amplitudes, suggesting that common experimental factors likely account for the variability in both waveforms. Despite this variability, we show that the shape of the dependence between DN1 amplitude and ITD is preserved. We then provide a BIC normalization strategy using monaural ABR amplitude that reduces the variability of DN1 peak measurements. Finally, we evaluate this normalization strategy in the context of detecting changes of the DN1 amplitude-to-ITD relationship. Our results indicate that the BIC measurement variability can be reduced by a factor of two by performing a simple and objective normalization operation. We discuss the potential for this normalized BIC measure as a biomarker for binaural hearing.
On average across bones, incus stimulation upon initial contact produced an L(Emax)of 125, 127, and 121 dB SPL and residual hearing losses of -2, -1, and -1 dB with respect to unloaded, unaided conditions for the three AMEIs, respectively. Across bones and transducers, increasing static transducer load by incrementing the AMEI up to 125 μm significantly improved performance without affecting residual hearing loss. Loading beyond 125 μm (half turn) did not improve performance but significantly increased residual hearing loss.
Despite the common use of guinea pigs in investigations of the neural mechanisms of binaural and spatial hearing, their behavioral capabilities in spatial hearing tasks have surprisingly not been thoroughly investigated. To begin to fill this void, we tested the spatial hearing of adult male guinea pigs in several experiments using a paradigm based on the prepulse inhibition (PPI) of the acoustic startle response. In the first experiment, we presented continuous broadband noise from one speaker location and switched to a second speaker location (the "prepulse") along the azimuth prior to presenting a brief, ∼110 dB SPL startle-eliciting stimulus. We found that the startle response amplitude was systematically reduced for larger changes in speaker swap angle (i.e., greater PPI), indicating that using the speaker "swap" paradigm is sufficient to assess stimulus detection of spatially separated sounds. In a second set of experiments, we swapped low- and high-pass noise across the midline to estimate their ability to utilize interaural time- and level-difference cues, respectively. The results reveal that guinea pigs can utilize both binaural cues to discriminate azimuthal sound sources. A third set of experiments examined spatial release from masking using a continuous broadband noise masker and a broadband chirp signal, both presented concurrently at various speaker locations. In general, animals displayed an increase in startle amplitude (i.e., lower PPI) when the masker was presented at speaker locations near that of the chirp signal, and reduced startle amplitudes (increased PPI) indicating lower detection thresholds when the noise was presented from more distant speaker locations. In summary, these results indicate that guinea pigs can: 1) discriminate changes in source location within a hemifield as well as across the midline, 2) discriminate sources of low- and high-pass sounds, demonstrating that they can effectively utilize both low-frequency interaural time and high-frequency level difference sound localization cues, and 3) utilize spatial release from masking to discriminate sound sources. This report confirms the guinea pig as a suitable spatial hearing model and reinforces prior estimates of guinea pig hearing ability from acoustical and physiological measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.