BACKGROUND & AIMS: Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and less expensively than molecular assays. However, clinical application of this technology requires high performance and multisite validation, which have not yet been performed. METHODS: We collected H&E-stained slides and findings from molecular analyses for MSI and dMMR from 8836 colorectal tumors (of all stages) included in the MSI-DETECT consortium study, from Germany, the Netherlands, the United Kingdom, and the United States. Specimens with dMMR were identified by immunohistochemistry analyses of tissue microarrays for loss of MLH1, MSH2, MSH6, and/or PMS2. Specimens with MSI were identified by genetic analyses. We trained a deep-learning detector to identify samples with MSI from these slides; performance was assessed by cross-validation (N ¼ 6406 specimens) and validated in an external cohort (n ¼ 771 specimens). Prespecified endpoints were area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve
Clinical workflows in oncology rely on predictive and prognostic molecular biomarkers. However, the growing number of these complex biomarkers tends to increase the cost and time for decision-making in routine daily oncology practice; furthermore, biomarkers often require tumour tissue on top of routine diagnostic material. Nevertheless, routinely available tumour tissue contains an abundance of clinically relevant information that is currently not fully exploited. Advances in deep learning (DL), an artificial intelligence (AI) technology, have enabled the extraction of previously hidden information directly from routine histology images of cancer, providing potentially clinically useful information. Here, we outline emerging concepts of how DL can extract biomarkers directly from histology images and summarise studies of basic and advanced image analysis for cancer histology. Basic image analysis tasks include detection, grading and subtyping of tumour tissue in histology images; they are aimed at automating pathology workflows and consequently do not immediately translate into clinical decisions. Exceeding such basic approaches, DL has also been used for advanced image analysis tasks, which have the potential of directly affecting clinical decision-making processes. These advanced approaches include inference of molecular features, prediction of survival and end-to-end prediction of therapy response. Predictions made by such DL systems could simplify and enrich clinical decision-making, but require rigorous external validation in clinical settings.
and tluedde@ukaachen.de 34 35 Precision treatment of cancer relies on genetic alterations which are diagnosed by molecular 36 biology assays. 1 These tests can be a bottleneck in oncology workflows because of high turna-37 round time, tissue usage and costs. 2 Here, we show that deep learning can predict point muta-38 tions, molecular tumor subtypes and immune-related gene expression signatures 3,4 directly 39 from routine histological images of tumor tissue. We developed and systematically optimized 40 a one-stop-shop workflow and applied it to more than 4000 patients with breast 5 , colon and 41 rectal 6 , head and neck 7 , lung 8,9 , pancreatic 10 , prostate 11 cancer, melanoma 12 and gastric 13 can-42 cer. Together, our findings show that a single deep learning algorithm can predict clinically ac-43 tionable alterations from routine histology data. Our method can be implemented on mobile 44 hardware 14 , potentially enabling point-of-care diagnostics for personalized cancer treatment 45 in individual patients. 46 Clinical guidelines recommend molecular testing of tumor tissue for most patients with advanced 47 209 The results are in part based upon data generated by the TCGA Research Network: http://can-210 cergenome.nih.gov/. Our funding sources are as follows. J.N.K.: RWTH University Aachen (START 211
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.