Background: Elevated postoperative N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations are predictive for cardiac adverse events in noncardiac surgery. Studies indicate that supplemental oxygen decreases sympathetic nerve activity and might, therefore, improve cardiovascular function. Thus, we will test the effect of perioperative supplemental oxygen administration on NT-proBNP release after surgery. Methods/design: We will conduct a single-center, double-blinded, randomized trial at the Medical University of Vienna, including 260 patients with increased cardiac risk factors undergoing moderate-to high-risk noncardiac surgery. Patients will be randomly assigned to receive 80% versus 30% oxygen during surgery and for 2 h postoperatively. The primary outcome will be the difference in maximum NT-proBNP release after surgery. As secondary outcomes we will assess the effect of supplemental oxygen on postoperative maximum troponin T concentration, oxidation-reduction potential, von Willebrand factor concentration and perioperative fluid requirements. We will perform outcome measurements 2 h after surgery, on postoperative day 1 and on postoperative day 3. The NT-proBNP concentration and the oxidation-reduction potential will also be measured within 72 h before discharge. Discussion: Our trial should determine whether perioperative supplemental oxygen administration will reduce the postoperative release of NT-proBNP in patients with preoperative increased cardiovascular risk factors undergoing noncardiac surgery. Trial registration: ClinicalTrials.gov, ID: NCT03366857. Registered on 8th December 2017.
Background
N-terminal pro brain natriuretic peptide (NT-proBNP) and troponin T are released during myocardial wall stress and/or ischemia and are strong predictors for postoperative cardiovascular complications. However, the relative effects of goal-directed, intravenous administration of crystalloid compared to colloid solutions on NT-proBNP and troponin T, especially in relatively healthy patients undergoing moderate- to high-risk noncardiac surgery, remains unclear. Thus, we evaluated in this sub-study the effect of a goal-directed crystalloid versus a goal-directed colloid fluid regimen on postoperative maximum NT-proBNP concentration. We further evaluated the incidence of myocardial injury after noncardiac surgery (MINS) between both study groups.
Methods
Thirty patients were randomly assigned to receive additional intravenous fluid boluses of 6% hydroxyethyl starch 130/0.4 and 30 patients to receive lactated Ringer’s solution. Intraoperative fluid management was guided by oesophageal Doppler-according to a previously published algorithm. The primary outcome were differences in postoperative maximum NT-proBNP (maxNT-proBNP) between both groups. As our secondary outcome we evaluated the incidence of MINS between both study groups. We defined maxNT-proBNP as the maximum value measured within 2 h after surgery and on the first and second postoperative day.
Results
In total 56 patients were analysed. There was no significant difference in postoperative maximum NT-proBNP between the colloid group (258.7 ng/L (IQR 199.4 to 782.1)) and the crystalloid group (440.3 ng/L (IQR 177.9 to 691.2)) during the first 2 postoperative days (
P
= 0.29). Five patients in the colloid group and 7 patients in the crystalloid group developed MINS (
P
= 0.75).
Conclusions
Based on this relatively small study goal-directed colloid administration did not decrease postoperative maxNT-proBNP concentration as compared to goal-directed crystalloid administration.
Trial registration
ClinicalTrials.gov (
NCT01195883
) Registered on 6th September 2010.
Background
The impact of changes in portal pressure before and after liver resection (defined as ΔHVPG) on postoperative kidney function remains unknown. Therefore, we investigated the effect of ΔHVPG on (i) the incidence of postoperative AKI and (ii) the renin-angiotensin system (RAAS) and sympathetic nervous system (SNS) activity.
Methods
We included 30 patients undergoing partial liver resection. Our primary outcome was postoperative AKI according to KDIGO criteria. For our secondary outcome we assessed the plasma renin, aldosterone, noradrenaline, adrenaline, dopamine and vasopressin concentrations prior and 2 h after induction of anaesthesia, on the first and fifth postoperative day. HVPG was measured prior and immediately after liver resection.
Results
ΔHVPG could be measured in 21 patients with 12 patients HVPG showing increases in HVPG (∆HVPG≥1 mmHg) while 9 patients remained stable. AKI developed in 7/12 of patients with increasing HVPG, but only in 2/9 of patients with stable ΔHVPG (p = 0.302). Noradrenalin levels were significantly higher in patients with increasing ΔHVPG than in patients with stable ΔHVPG. (p = 0.009). Biomarkers reflecting RAAS and SNS activity remained similar in patients with increasing vs. stable ΔHVPG.
Conclusions
Patients with increased HVPG had higher postoperative creatinine concentrations, however, the incidence of AKI was similar between patients with increased versus stable HVPG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.