We show that a cooperative game may be decomposed into a sum of component games, one for each player, using the combinatorial Hodge decomposition on a graph. This decomposition is shown to satisfy certain efficiency, null-player, symmetry, and linearity properties. Consequently, we obtain a new characterization of the classical Shapley value as the value of the grand coalition in each player's component game. We also relate this decomposition to a least-squares problem involving inessential games (in a similar spirit to previous work on least-squares and minimum-norm solution concepts) and to the graph Laplacian. Finally, we generalize this approach to games with weights and/or constraints on coalition formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.