Orientation of cell divisions is a key mechanism of tissue morphogenesis. In the growing Drosophila wing imaginal disc epithelium, most of the cell divisions in the central wing pouch are oriented along the proximal-distal (P-D) axis by the Dachsous-Fat-Dachs planar polarity pathway. However, cells at the periphery of the wing pouch instead tend to orient their divisions perpendicular to the P-D axis despite strong Dachs polarization. Here, we show that these circumferential divisions are oriented by circumferential mechanical forces that influence cell shapes and thus orient the mitotic spindle. We propose that this circumferential pattern of force is not generated locally by polarized constriction of individual epithelial cells. Instead, these forces emerge as a global tension pattern that appears to originate from differential rates of cell proliferation within the wing pouch. Accordingly, we show that localized overgrowth is sufficient to induce neighbouring cell stretching and reorientation of cell division. Our results suggest that patterned rates of cell proliferation can influence tissue mechanics and thus determine the orientation of cell divisions and tissue shape.
Tissues can grow in a particular direction by controlling the orientation of cell divisions. This phenomenon is evident in the developing Drosophila wing epithelium, where the tissue becomes elongated along the proximal-distal axis. We show that orientation of cell divisions in the wing requires planar polarization of an atypical myosin, Dachs. Our evidence suggests that Dachs constricts cell-cell junctions to alter the geometry of cell shapes at the apical surface, and that cell shape then determines the orientation of the mitotic spindle. Using a computational model of a growing epithelium, we show that polarized cell tension is sufficient to orient cell shapes, cell divisions, and tissue growth. Planar polarization of Dachs is ultimately oriented by long-range gradients emanating from compartment boundaries, and is therefore a mechanism linking these gradients with the control of tissue shape.
The molecular requirements and morphology of migrating cells can vary depending on matrix geometry; therefore, predicting the optimal migration strategy or the effect of experimental perturbation is difficult. We present a model of cell motility that encompasses actin-polymerization-based protrusions, actomyosin contractility, variable actin-plasma membrane linkage leading to membrane blebbing, cell-extracellular-matrix adhesion and varying extracellular matrix geometries. This is used to explore the theoretical requirements for rapid migration in different matrix geometries. Confined matrix geometries cause profound shifts in the relationship of adhesion and contractility to cell velocity; indeed, cell-matrix adhesion is dispensable for migration in discontinuous confined environments. The model is challenged to predict the effect of different combinations of kinase inhibitors and integrin depletion in vivo, and in confined matrices based on in vitro two-dimensional measurements. Intravital imaging is used to verify bleb-driven migration at tumour margins, and the predicted response to single and combinatorial manipulations.
TGF--induced Smad signal transduction from the membrane into the nucleus is not linear and unidirectional, but rather a dynamic network that couples Smad phosphorylation and dephosphorylation through continuous nucleocytoplasmic shuttling of Smads. To understand the quantitative behavior of this network, we have developed a tightly constrained computational model, exploiting the interplay between mathematical modeling and experimental strategies. The model simultaneously reproduces four distinct datasets with excellent accuracy and provides mechanistic insights into how the network operates. We use the model to make predictions about the outcome of fluorescence recovery after photobleaching experiments and the behavior of a functionally impaired Smad2 mutant, which we then verify experimentally. Successful model performance strongly supports the hypothesis of a dynamic maintenance of Smad nuclear accumulation during active signaling. The presented work establishes Smad nucleocytoplasmic shuttling as a dynamic network that flexibly transmits quantitative features of the extracellular TGF- signal, such as its duration and intensity, into the nucleus.systems biology ͉ TGF- ͉ computational modeling ͉ signaling network
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.