The coronavirus disease 2019 (COVID-19) pandemic has affected the world radically since 2020. Spain was one of the European countries with the highest incidence during the first wave. As a part of a consortium to monitor and study the evolution of the epidemic, we sequenced 2,170 samples, diagnosed mostly before lockdown measures. Here, we identified at least 500 introductions from multiple international sources and documented the early rise of two dominant Spanish epidemic clades (SECs), probably amplified by superspreading events. Both SECs were related closely to the initial Asian variants of SARS-CoV-2 and spread widely across Spain. We inferred a substantial reduction in the effective reproductive number of both SECs due to public-health interventions ( R e < 1), also reflected in the replacement of SECs by a new variant over the summer of 2020. In summary, we reveal a notable difference in the initial genetic makeup of SARS-CoV-2 in Spain compared with other European countries and show evidence to support the effectiveness of lockdown measures in controlling virus spread, even for the most successful genetic variants.
The COVID-19 pandemic has shaken the world since the beginning of 2020. Spain is among the European countries with the highest incidence of the disease during the first pandemic wave. We established a multidisciplinar consortium to monitor and study the evolution of the epidemic, with the aim of contributing to decision making and stopping rapid spreading across the country. We present the results for 2170 sequences from the first wave of the SARS-Cov-2 epidemic in Spain and representing 12% of diagnosed cases until 14th March. This effort allows us to document at least 500 initial introductions, between early February-March from multiple international sources. Importantly, we document the early raise of two dominant genetic variants in Spain (Spanish Epidemic Clades), named SEC7 and SEC8, likely amplified by superspreading events. In sharp contrast to other non-Asian countries those two variants were closely related to the initial variants of SARS-CoV-2 described in Asia and represented 40% of the genome sequences analyzed. The two dominant SECs were widely spread across the country compared to other genetic variants with SEC8 reaching a 60% prevalence just before the lockdown. Employing Bayesian phylodynamic analysis, we inferred a reduction in the effective reproductive number of these two SECs from around 2.5 to below 0.5 after the implementation of strict public-health interventions in mid March. The effects of lockdown on the genetic variants of the virus are reflected in the general replacement of preexisting SECs by a new variant at the beginning of the summer season. Our results reveal a significant difference in the genetic makeup of the epidemic in Spain and support the effectiveness of lockdown measures in controlling virus spread even for the most successful genetic variants. Finally, earlier control of SEC7 and particularly SEC8 might have reduced the incidence and impact of COVID-19 in our country.
Introduction. Mycoplasma genitalium is an emerging cause of sexually transmitted infections (STIs) and has been implicated in non-gonococcal urethritis in men and cervicitis in woman. The aim of this study is determinate the incidence and pathogenicity of M. genitalium within the diagnosis of STIs detected from clinical samples in a third level hospital. Material and methods. A total of 8,473 samples from endocervix, urethra, vagina, rectum and others were processed applying Allpex STI Essential Assay. More than 190 records were reviewed to determinate M. genitalium pathogenicity. Results. M. genitalium was detected in a rate 2.8%. Co-infections were detected in 20% of the patients. Conclusions. M. genitalium is considered a STI emerging pathogen thanks to the renewal of multiplex-PCR tests although with a low incidence in our approach. Emerging from our experience and the institutional recommendations both detection of acid nucleic techniques (NAATs) and gonococcal culture might be implemented accurately and coexist to adequate prescriptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.