BackgroundEnterocystoplasty is associated with serious complications resulting from the chronic interaction between intestinal epithelium and urine. Composite cystoplasty is proposed as a means of overcoming these complications by substituting intestinal epithelium with tissue-engineered autologous urothelium.ObjectiveTo develop a robust surgical procedure for composite cystoplasty and to determine if outcome is improved by transplantation of a differentiated urothelium.Design, setting, and participantsBladder augmentation with in vitro–generated autologous tissues was performed in 11 female Large-White hybrid pigs in a well-equipped biomedical centre with operating facilities. Participants were a team comprising scientists, urologists, a veterinary surgeon, and a histopathologist.MeasurementsUrothelium harvested by open biopsy was expanded in culture and used to develop sheets of nondifferentiated or differentiated urothelium. The sheets were transplanted onto a vascularised, de-epithelialised, seromuscular colonic segment at the time of bladder augmentation. After removal of catheters and balloon at two weeks, voiding behaviour was monitored and animals were sacrificed at 3 months for immunohistology.Results and limitationsEleven pigs underwent augmentation, but four were lost to complications. Voiding behaviour was normal in the remainder. At autopsy, reconstructed bladders were healthy, lined by confluent urothelium, and showed no fibrosis, mucus, calculi, or colonic regrowth. Urothelial morphology was transitional with variable columnar attributes consistent between native and augmented segments. Bladders reconstructed with differentiated cell sheets had fewer lymphocytes infiltrating the lamina propria, indicating more effective urinary barrier function.ConclusionsThe study endorses the potential for composite cystoplasty by (1) successfully developing reliable techniques for transplanting urothelium onto a prepared, vascularised, smooth muscle segment and (2) creating a functional urothelium-lined augmentation to overcome the complications of conventional enterocystoplasty.
Presents results of focus group discussions held with 300 nine‐to‐11‐year old UK children. Questions were asked about whether it matters if someone is fat or thin; whether a fat child should take any action; what problems they might have; and the relationship between fatness, thinness and health. Considerable complexity emerged; children divided fat children into those for whom it was natural and those for whom it was self‐inflicted. They showed a great deal of sympathy for “naturally” fat children. However, they also felt that fat children would be bullied. Girls seemed less able than boys to resist the pressures to be thin, but also showed considerable ability to distance themselves from media images of thin women. Although children had learned the orthodoxy surrounding health, fat and overweight, they did not believe that “thin is good, fat is bad” and did not tend to link weight control with exercise.
Understanding the local atomic order in amorphous thin film coatings and how it relates to macroscopic performance factors, such as mechanical loss, provides an important path towards enabling the accelerated discovery and development of improved coatings. High precision x-ray scattering measurements of thin films of amorphous zirconia-doped tantala (ZrO 2-Ta 2 O 5) show systematic changes in intermediate range order (IRO) as a function of postdeposition heat treatment (annealing). Atomic modeling captures and explains these changes, and shows that the material has building blocks of metal-centered polyhedra and the effect of annealing is to alter the connections between the polyhedra. The observed changes in IRO are associated with a shift in the ratio of corner-sharing to edge-sharing polyhedra. These changes correlate with changes in mechanical loss upon annealing, and suggest that the mechanical loss can be reduced by developing a material with a designed ratio of corner-sharing to edge-sharing polyhedra.
Background Local observation has suggested that placing limb leads on the torso when recording the standard 12-lead resting electrocardiogram (ECG) has become commonplace. This non-standard modification has the important advantages of ease and speed of application, and in an emergency may be applied with minimal undressing. Limb movement artefact is also reduced. It is believed that ECGs obtained with torso electrodes are interchangeable with standard ECGs and any minor electrocardiographic variations do not affect diagnostic interpretation. Study design The study compared 12-lead ECGs in 100 patients during routine electrocardiography, one being taken in the approved way and one taken with modified limb electrodes. Results It was found that the use of torso leads produced important amplitude and waveform changes associated with a more vertical and rightward shift of the QRS frontal axis, particularly in those with abnormal standard ECGs. Such changes generated important ECG abnormalities in 36% of patients with normal standard ECGs, suggesting “heart disease of electrocardiographic origin”. In those with abnormal standard ECGs, moving the limb leads to the torso made eight possible myocardial infarcts appear and five inferior infarcts disappeared. Twelve others developed clinically important T wave or QRS frontal axis changes. Conclusions It is vital that ECGs should be acquired in the standard way unless there are particular reasons for not doing so, and that any modification of electrode placement must be reported on the ECG itself. Marking the ECG “torso-positioned limb leads” or “non-standard” should alert the clinician to its limitations for clinical or investigative purposes, as any lead adaptation may modify the tracing and could result in misinterpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.