New materials are prerequisite for major breakthrough applications influencing our daily life, and therefore are pivotal for the chemical industry. Metal-organic frameworks (MOFs) constitute an emerging class of materials useful in gas storage, gas purification and separation applications as well as heterogeneous catalysis. They not only offer higher surface areas and the potential for enhanced activity than currently used materials like base metal oxides, but also provide shape/size selectivity which is important both for separations and catalysis. In this critical review an overview of the potential applications of MOFs in the chemical industry is presented. Furthermore, the synthesis and characterization of the materials are briefly discussed from the industrial perspective (88 references).
A procedure for making covalently linked organometallic complexes within the pores of metal-organic frameworks (MOFs) has been described. An N-heterocyclic carbene precursor containing link L0 was prepared and then constructed into a MOF-5-type structure (IRMOF-76). Attempts to produce covalently bound organometallic complexes in IRMOF-76 were unsuccessful. An alternative way of linking the first metalated link, L1, into the desired metalated MOF structure, IRMOF-77, was successful. IRMOF-76 and -77 were characterized by single-crystal X-ray studies. Demonstration of permanent porosity and successful substitution of the pyridine coligand in IRMOF-77 are also described.
A catalytic system combining the high activity of homogeneous catalysts and the ease of use of heterogeneous catalysts for methane activation is reported. The vanadium-containing metal-organic frameworks (MOFs) MIL-47 and MOF-48 are found to have high catalytic activity and chemical stability. They convert methane selectively to acetic acid with 70% yield (490 TON) based on K(2)S(2)O(8) as an oxidant. Isotopic labeling experiments showed that two methane molecules are converted to the produced acetic acid. The MOF catalysts are reusable and remain catalytically active for several recycling steps without losing their crystalline structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.