To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of and genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion. This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. .
SummaryBackgroundTrivalent oral polio vaccine (tOPV) was replaced worldwide from April, 2016, by bivalent types 1 and 3 oral polio vaccine (bOPV) and one dose of inactivated polio vaccine (IPV) where available. The risk of transmission of type 2 poliovirus or Sabin 2 virus on re-introduction or resurgence of type 2 poliovirus after this switch is not understood completely. We aimed to assess the risk of Sabin 2 transmission after a polio vaccination campaign with a monovalent type 2 oral polio vaccine (mOPV2).MethodsWe did an open-label cluster-randomised trial in villages in the Matlab region of Bangladesh. We randomly allocated villages (clusters) to either: tOPV at age 6 weeks, 10 weeks, and 14 weeks; or bOPV at age 6 weeks, 10 weeks, and 14 weeks and either one dose of IPV at age 14 weeks or two doses of IPV at age 14 weeks and 18 weeks. After completion of enrolment, we implemented an mOPV2 vaccination campaign that targeted 40% of children younger than 5 years, regardless of enrolment status. The primary outcome was Sabin 2 incidence in the 10 weeks after the campaign in per-protocol infants who did not receive mOPV2, as assessed by faecal shedding of Sabin 2 by reverse transcriptase quantitative PCR (RT-qPCR). The effect of previous immunity on incidence was also investigated with a dynamical model of poliovirus transmission to observe prevalence and incidence of Sabin 2 virus. This trial is registered at ClinicalTrials.gov, number NCT02477046.FindingsBetween April 30, 2015, and Jan 14, 2016, individuals from 67 villages were enrolled to the study. 22 villages (300 infants) were randomly assigned tOPV, 23 villages (310 infants) were allocated bOPV and one dose of IPV, and 22 villages (329 infants) were assigned bOPV and two doses of IPV. Faecal shedding of Sabin 2 in infants who did not receive the mOPV2 challenge did not differ between children immunised with bOPV and one or two doses of IPV and those who received tOPV (15 of 252 [6%] vs six of 122 [4%]; odds ratio [OR] 1·29, 95% CI 0·45–3·72; p=0·310). However, faecal shedding of Sabin 2 in household contacts was increased significantly with bOPV and one or two doses of IPV compared with tOPV (17 of 751 [2%] vs three of 353 [1%]; OR 3·60, 95% CI 0·82–15·9; p=0·045). Dynamical modelling of within-household incidence showed that immunity in household contacts limited transmission.InterpretationIn this study, simulating 1 year of tOPV cessation, Sabin 2 transmission was higher in household contacts of mOPV2 recipients in villages receiving bOPV and either one or two doses of IPV, but transmission was not increased in the community as a whole as shown by the non-significant difference in incidence among infants. Dynamical modelling indicates that transmission risk will be higher with more time since cessation.FundingBill & Melinda Gates Foundation.
Denosumab has been used successfully to treat disease‐associated osteoclast overactivity, including giant cell tumor of bone. Given its mechanism of action, denosumab is a potent potential treatment of other osteoclast bone dysplasias including central giant cell granuloma (CGCG), aneurysmal bone cyst (ABC), and cherubism. Relatively little is known about the safety and efficacy of denosumab in patients with these conditions, especially in children. We report on 3 pediatric patients treated with denosumab over a 3‐year period at UCLA Medical Center (Los Angeles and Santa Monica, CA, USA): a 12‐year‐old with recurrent ABC of the pelvis, a 14‐year‐old with CGCG of the mandible, and a 12‐year‐old with cherubism. All were started on a 1‐year course of 15 doses 120 mg s.c., given monthly with two loading doses on day 8 and 15. All patients demonstrated rapid and pronounced clinical improvement while on denosumab, including a significant reduction in pain and sclerosis of lytic lesions on radiographs. Within 1 month of initiating therapy, 2 patients experienced hypocalcemia (Common Terminology Criteria for Adverse Events [CTCAE] grade 2) and hypophosphatemia, with 1 patient experiencing symptoms. One patient went on to experience symptomatic rebound hypercalcemia (CTCAE grade 4) 5 months after completing therapy, requiring bisphosphonates and calcitonin. For the second patient, we developed a schedule to wean denosumab involving the progressive lengthening of time between doses from 1 to 4 months in 1‐month increments before cessation. We found that denosumab therapy results in significant clinical and radiographic improvement for pediatric patients with nonresectable ABC, CGCG, and cherubism. Problems with serum calcium may be more common in younger patients, with symptomatic and protracted rebound hypercalcemia after cessation of therapy the most significant. We present a potential solution to this problem with progressive spacing of doses. Potential serious adverse events from alterations in calcium homeostasis should be explored in prospective clinical trials. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Main pointOral Polio Virus may cause nonspecific reductions in mortality by reducing etiology-specific diarrheal burden, specifically the number of days with diarrhea. This is likely driven by reductions in bacterial—especially Campylobacter, Shigella—diarrhea. Similar off-target effects were not identified for rotavirus vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.