Skeletal muscle contraction increases intracellular ATP turnover, calcium flux, and mechanical stress, initiating signal transduction pathways that modulate peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent transcriptional programmes. The purpose of this study was to determine if the intensity of exercise regulates PGC-1α expression in human skeletal muscle, coincident with activation of signalling cascades known to regulate PGC-1α transcription. Eight sedentary males expended 400 kcal (1674 kj) during a single bout of cycle ergometer exercise on two separate occasions at either 40% (LO) or 80% (HI) ofV O 2 peak . Skeletal muscle biopsies from the m. vastus lateralis were taken at rest and at +0, +3 and +19 h after exercise. Energy expenditure during exercise was similar between trials, but the high intensity bout was shorter in duration (LO, 69.9 ± 4.0 min; HI, 36.0 ± 2.2 min, P < 0.05) and had a higher rate of glycogen utilization (P < 0.05). PGC-1α mRNA abundance increased in an intensity-dependent manner +3 h after exercise (LO, 3.8-fold; HI, 10.2-fold, P < 0.05). AMP-activated protein kinase (AMPK) (2.8-fold, P < 0.05) and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation (84%, P < 0.05) increased immediately after HI but not LO. p38 mitogen-activated protein kinase (MAPK) phosphorylation increased after both trials (∼2.0-fold, P < 0.05), but phosphorylation of the downstream transcription factor, activating transcription factor-2 (ATF-2), increased only after HI (2.4-fold, P < 0.05). Cyclic-AMP response element binding protein (CREB) phosphorylation was elevated at +3 h after both trials (∼80%, P < 0.05) and class IIa histone deacetylase (HDAC) phosphorylation increased only after HI (2.0-fold, P < 0.05). In conclusion, exercise intensity regulates PGC-1α mRNA abundance in human skeletal muscle in response to a single bout of exercise. This effect is mediated by differential activation of multiple signalling pathways, with ATF-2 and HDAC phosphorylation proposed as key intensity-dependent mediators.
The molecular signaling mechanisms by which muscle contractions lead to changes in glucose metabolism and gene expression remain largely undefined. We assessed whether exercise activates MAP kinase proteins (ERK1/2, SEK1, and p38 MAP kinase) as well as Akt and PYK2 in skeletal muscle from healthy volunteers obtained during and after one-leg cycle ergometry at approximately 70% VO2max. Exercise led to a marked increase in ERK1/2 phosphorylation, which rapidly decreased to resting levels upon recovery. Exercise increased phosphorylation of SEK1 and p38 MAP kinase to a lesser extent than ERK1/2. In contrast to ERK1/2, p38 MAP kinase phosphorylation was increased in nonexercised muscle upon cessation of exercise. Phosphorylation of the transcription factor CREB was increased in nonexercised muscle upon cessation of exercise. Exercise did not activate Akt or increase tyrosine phosphorylation of PYK2. Thus, exercise has divergent effects on parallel MAP kinase pathways, of which only p38 demonstrated a systemic response. However, our data do not support a role of Akt or PYK2 in exercise/contraction-induced signaling in human skeletal. Activation of the different MAP kinase pathways by physical exercise appears to be important in the regulation of transcriptional events in skeletal muscle.
Skeletal muscle from strength- and endurance-trained individuals represents diverse adaptive states. In this regard, AMPK-PGC-1alpha signaling mediates several adaptations to endurance training, while up-regulation of the Akt-TSC2-mTOR pathway may underlie increased protein synthesis after resistance exercise. We determined the effect of prior training history on signaling responses in seven strength-trained and six endurance-trained males who undertook 1 h cycling at 70% VO2peak or eight sets of five maximal repetitions of isokinetic leg extensions. Muscle biopsies were taken at rest, immediately and 3 h postexercise. AMPK phosphorylation increased after cycling in strength-trained (54%; P<0.05) but not endurance-trained subjects. Conversely, AMPK was elevated after resistance exercise in endurance- (114%; P<0.05), but not strength-trained subjects. Akt phosphorylation increased in endurance- (50%; P<0.05), but not strength-trained subjects after cycling but was unchanged in either group after resistance exercise. TSC2 phosphorylation was decreased (47%; P<0.05) in endurance-trained subjects following resistance exercise, but cycling had little effect on the phosphorylation state of this protein in either group. p70S6K phosphorylation increased in endurance- (118%; P<0.05), but not strength-trained subjects after resistance exercise, but was similar to rest in both groups after cycling. Similarly, phosphorylation of S6 protein, a substrate for p70 S6K, was increased immediately following resistance exercise in endurance- (129%; P<0.05), but not strength-trained subjects. In conclusion, a degree of "response plasticity" is conserved at opposite ends of the endurance-hypertrophic adaptation continuum. Moreover, prior training attenuates the exercise specific signaling responses involved in single mode adaptations to training.
The aim of the study was to investigate the effect of resistance exercise alone or in combination with oral intake of branched-chain amino acids (BCAA) on phosphorylation of the 70-kDa S6 protein kinase (p70S6k) and mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK1/2), and p38 MAPK in skeletal muscle. Seven male subjects performed one session of quadriceps muscle resistance training (4 × 10 repetitions at 80% of one repetition maximum) on two occasions. In a randomized order, double-blind, crossover test, subjects ingested a solution of BCAA or placebo during and after exercise. Ingestion of BCAA increased plasma concentrations of isoleucine, leucine, and valine during exercise and throughout recovery after exercise (2 h postexercise), whereas no change was noted after the placebo trial. Resistance exercise led to a robust increase in p70S6k phosphorylation at Ser424 and/or Thr421, which persisted 1 and 2 h after exercise. BCAA ingestion further enhanced p70S6k phosphorylation 3.5-fold during recovery. p70S6k phosphorylation at Thr389 was unaltered directly after resistance exercise. However, during recovery, Thr389 phosphorylation was profoundly increased, but only during the BCAA trial. Furthermore, phosphorylation of the ribosomal protein S6 was also increased in the recovery period only during the BCAA trial. Exercise led to a marked increase in ERK1/2 and p38 MAPK phosphorylation, which was completely suppressed upon recovery and unaltered by BCAA. In conclusion, BCAA, ingested during and after resistance exercise, mediate signal transduction through p70S6k in skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.