Low-density lipoprotein receptor-related protein-1 (LRP) on brain capillaries clears amyloid β-peptide (Aβ) from brain. Here, we show that soluble circulating LRP (sLRP) provides key endogenous peripheral 'sink' activity for Aβ in humans. Recombinant LRP cluster IV (LRP-IV) bound Aβ in plasma in mice and in Alzheimer's disease-affected humans with compromised sLRPmediated Aβ binding, and reduced Aβ-related pathology and dysfunction in a mouse model of Alzheimer mice, suggesting LRP-IV can effectively replace native sLRP and clear Aβ.LRP binds the Alzheimer's disease neurotoxin, Aβ, at the abluminal side of the blood-brain barrier (BBB), which initiates Aβ clearance from brain to blood via transcytosis across the BBB1 -4. In the liver, LRP mediates systemic clearance of Aβ5. β-secretase cleaves the Nterminus extracellular domain of LRP6, which releases soluble LRP (sLRP). sLRP normally circulates in plasma 7 .Two major binding domains of LRP, cluster II and cluster IV 8 , bind Aβ in vitro with high affinity: i.e., Aβ40 > Aβ42 (ref. 2). We hypothesized that LRP recombinant cluster IV (LRP-IV) retains its high-affinity binding for Aβ in vivo, and that this binding alters Aβ transport at the BBB, which is dominated by the cell-surface LRP1 -4 and the receptor for advanced glycation end-products (RAGE) 9 , resulting in Aβ efflux from the brain. We also hypothesized
We report here that amyotrophic lateral sclerosis-linked superoxide dismutase 1 (SOD1) mutants with different biochemical characteristics disrupted the blood-spinal cord barrier in mice by reducing the levels of the tight junction proteins ZO-1, occludin and claudin-5 between endothelial cells. This resulted in microhemorrhages with release of neurotoxic hemoglobin-derived products, reductions in microcirculation and hypoperfusion. SOD1 mutant-mediated endothelial damage accumulated before motor neuron degeneration and the neurovascular inflammatory response occurred, indicating that it was a central contributor to disease initiation.
Brain hemorrhage is a serious complication of tissue plasminogen activator (tPA) therapy for ischemic stroke. Here we report that activated protein C (APC), a plasma serine protease with systemic anticoagulant, anti-inflammatory and antiapoptotic activities, and direct vasculoprotective and neuroprotective activities, blocks tPA-mediated brain hemorrhage after transient brain ischemia and embolic stroke in rodents. We show that APC inhibits a pro-hemorrhagic tPA-induced, NF-kappaB-dependent matrix metalloproteinase-9 pathway in ischemic brain endothelium in vivo and in vitro by acting through protease-activated receptor 1. The present findings suggest that APC may improve thrombolytic therapy for stroke, in part, by reducing tPA-mediated hemorrhage.
Skeletal muscle from strength- and endurance-trained individuals represents diverse adaptive states. In this regard, AMPK-PGC-1alpha signaling mediates several adaptations to endurance training, while up-regulation of the Akt-TSC2-mTOR pathway may underlie increased protein synthesis after resistance exercise. We determined the effect of prior training history on signaling responses in seven strength-trained and six endurance-trained males who undertook 1 h cycling at 70% VO2peak or eight sets of five maximal repetitions of isokinetic leg extensions. Muscle biopsies were taken at rest, immediately and 3 h postexercise. AMPK phosphorylation increased after cycling in strength-trained (54%; P<0.05) but not endurance-trained subjects. Conversely, AMPK was elevated after resistance exercise in endurance- (114%; P<0.05), but not strength-trained subjects. Akt phosphorylation increased in endurance- (50%; P<0.05), but not strength-trained subjects after cycling but was unchanged in either group after resistance exercise. TSC2 phosphorylation was decreased (47%; P<0.05) in endurance-trained subjects following resistance exercise, but cycling had little effect on the phosphorylation state of this protein in either group. p70S6K phosphorylation increased in endurance- (118%; P<0.05), but not strength-trained subjects after resistance exercise, but was similar to rest in both groups after cycling. Similarly, phosphorylation of S6 protein, a substrate for p70 S6K, was increased immediately following resistance exercise in endurance- (129%; P<0.05), but not strength-trained subjects. In conclusion, a degree of "response plasticity" is conserved at opposite ends of the endurance-hypertrophic adaptation continuum. Moreover, prior training attenuates the exercise specific signaling responses involved in single mode adaptations to training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.