We present a combined core-level spectroscopy and low-energy electron diffraction study of the evolution of thin CuI layers on graphene/Ni(111) during annealing. It has been found that the annealing of the CuI/graphene/Ni(111) system up to 160°C results in the formation of an ordered CuI overlayer with a (√3 × √3) R30°structure on top of the graphene surface. At annealing temperatures of about 180°C or higher, the CuI overlayer decomposes with a simultaneous intercalation of Cu and I atoms underneath the graphene monolayer on Ni(111). Nearly complete intercalation of graphene by Cu and I atoms can be achieved by deposition of about 20 Å of CuI, followed by annealing at 200°C. The intercalated graphene layer is p-doped due to interfacial iodine atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.