We report in this work the synthesis, cytotoxicity, and antimicrobial activity of ([1,2,4]triazolo[1,5-c]quinazolin-2-ylthio)carboxylic acid amides 4-7 in connection with our previous research in the preparation of triazoloquinazoline derivatives. Due to simplicity, general availability of starting materials, and high yields, the most reliable method of synthesis appeared to be the one with N,N-carbonyldiimidazole activation stage. The chemical structures of all obtained substances were deduced from FT-IR, (1)H-NMR, EI-MS, and LC-MS spectral data. The results of cytotoxicity evaluated by bioluminescence inhibition of bacterium Photobacterium leiognathi, strain Sh1 showed that compounds 4.1, 4.6, and 6.1 were the most cytotoxic. Investigation of the antimicrobial and antifungal activity of amides 4-7 (concentration 5 mg/mL) was carried out by the stiff-plate agar-diffusion method. We found that the compounds possessed low (4.1, 4.7) antifungal activity against Candida tenuis and strong (4.21, 5.1, 5.9) or inefficient (4.7, 4.12, 4.16) activity against Aspergillus niger. Substances 5.1 and 5.9 slightly affected Mycobacterium luteum. Staphylococcus aureus was resistant to all obtained substances, and only the n-butyramide derivatives 7.1 and 7.5 inhibited the growth of Escherichia coli. Hence, there was no strong correlation between bioluminescence inhibition and antimicrobial activity of the investigated substances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.