Bloom's syndrome (BS) is[Keywords: Bloom's syndrome; BLM helicase; homologous recombination; Rad51; RecQ; Rad54] Supplemental material is available at http://www.genesdev.org.
Human Rad51 (hRad51) protein plays a key role in homologous recombination and DNA repair. hRad51 protein forms a helical filament on single-stranded DNA (ssDNA), which performs the basic steps of homologous recombination: a search for homologous double-stranded DNA (dsDNA) and DNA strand exchange. hRad51 protein possesses DNA-dependent ATPase activity; however, the role of this activity has not been understood. Our current results show that Ca 2؉ greatly stimulates DNA strand exchange activity of hRad51 protein. We found that Ca 2؉ exerts its stimulatory effect by modulating the ATPase activity of hRad51 protein.Our data demonstrate that, in the presence of Mg 2؉ , the hRad51-ATP-ssDNA filament is quickly converted to an inactive hRad51-ADP-ssDNA form, due to relatively rapid ATP hydrolysis and slow dissociation of ADP. Ca 2؉ maintains the active hRad51-ATP-ssDNA filament by reducing the ATP hydrolysis rate. These findings demonstrate a crucial role of the ATPase activity in regulation of DNA strand exchange activity of hRad51 protein. This mechanism of Rad51 protein regulation by modulating its ATPase activity is evolutionarily recent; we found no such mechanism for yeast Rad51 (yRad51) protein.
Homologous recombination (HR) is a molecular process that plays multiple important roles in DNA metabolism, both for DNA repair and genetic variation in all forms of life1. Generally, HR involves exchange of genetic information between two identical or nearly identical DNA molecules1; however, HR can also occur between RNA molecules, as shown for RNA viruses2. Previous research showed that synthetic RNA oligonucleotides (oligos) can template DNA double-strand break (DSB) repair in yeast and human cells3,4, and artificial long RNA templates injected in ciliate cells can guide genomic rearrangements5. Here we report that endogenous transcript RNA mediates HR with chromosomal DNA in yeast Saccharomyces cerevisiae. We developed a system to detect events of HR initiated by transcript RNA following repair of a chromosomal DSB occurring either in a homologous but remote locus (in trans), or in the same transcript-generating locus (in cis) in reverse transcription defective yeast strains. We found that RNA-DNA recombination is blocked by ribonucleases (RNases) H1 and H2. In the presence of RNases H, DSB repair proceeds through a cDNA intermediate, whereas in their absence, it proceeds directly through RNA. The proximity of the transcript to its chromosomal DNA partner in cis facilitates Rad52-driven HR during DSB repair. In accord, we demonstrate that yeast and human Rad52 proteins efficiently catalyze annealing of RNA to a DSB-like DNA end in vitro. Our results reveal a novel mechanism of HR and DNA repair templated by transcript RNA. Thus, considering the abundance of RNA transcripts in cells, the impact of RNA on genomic stability and plasticity could be vast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.