Biomass conversion to fuels and chemicals
provides sustainability,
but the highly oxygenated nature of a large fraction of biomass-derived
molecules requires removal of the excess oxygen and partial hydrogenation
in the upgrade, typically met by hydrodeoxygenation processes. Catalytic
transfer hydrogenation is a general approach in accomplishing this
with renewable organic hydrogen donors, but mechanistic understanding
is currently lacking. Here, we elucidate the molecular level reaction
pathway of converting hemicellulose-derived furfural to 2-methylfuran
on a bifunctional Ru/RuO
x
/C catalyst using
isopropyl alcohol as the hydrogen donor via a combination of isotopic
labeling and kinetic studies. Hydrogenation of the carbonyl group
of furfural to furfuryl alcohol proceeds through a Lewis acid-mediated
intermolecular hydride transfer and hydrogenolysis of furfuryl alcohol
occurs mainly via ring-activation involving both metal and Lewis acid
sites. Our results show that the bifunctional nature of the catalyst
is critical in the efficient hydrodeoxygenation of furanics and provides
insights toward the rational design of such catalysts.
Carbon-supported, Pt and PtCo nanocrystals (NCs) with controlled size and composition were synthesized and examined for hydrodeoxygenation (HDO) of 5-hydroxymethylfurfural (HMF). Experiments in a continuous flow reactor with 1-propanol solvent, at 120 to 160 °C and 33 bar H2, demonstrated that reaction is sequential on both Pt and PtCo alloys, with 2,5-dimethylfuran (DMF) formed as an intermediate product. However, the reaction of DMF is greatly suppressed on the alloys, such that a Pt3Co2 catalyst achieved DMF yields as high as 98%. XRD and XAS data indicate that the Pt3Co2 catalyst consists of a Pt-rich core and a Co oxide surface monolayer whose structure differs substantially from that of bulk Co oxide. Density functional theory (DFT) calculations reveal that the oxide monolayer interacts weakly with the furan ring to prevent side reactions, including overhydrogenation and ring opening, while providing sites for effective HDO to the desired product, DMF. We demonstrate that control over metal nanoparticle size and composition, along with operating conditions, is crucial to achieving good performance and stability. Implications of this mechanism for other reactions and catalysts are discussed
C-O bond activation on monofunctional catalysts (metals, carbides, and oxides) is challenging due to activity constraints imposed by energy scaling relationships. Yet, contrary to predictions, recently discovered multifunctional metal/metal oxide catalysts (e.g., Rh/ReOx, Rh/MoOx, Ir/VOx) demonstrate unusually high C-O scission activity at moderate temperatures. Herein, we use extensive density functional theory calculations, first-principles microkinetic modeling, and electronic structure analysis to elucidate the metal/metal oxide synergy in the Ru/RuO2 catalyst, which enables up to 76% yield of the C-O scission product (2-methyl furan) in catalytic transfer hydrogenolysis of furfural at low temperatures. Our key mechanistic finding is a facile radical-mediated C-O bond activation on RuO2 oxygen vacancies, which directly leads to a weakly bound final product. This is the first time the radical reduction mechanism is reported in heterogeneous catalysis at temperatures <200 °C. We attribute the unique catalytic properties to the formation of a conjugation-stabilized furfuryl radical upon C-O bond scission, the strong hydroxyl affinity of oxygen vacancies due to the metallic character of RuO2, and the acid-base heterogeneity of the oxide surface. The conjugation-driven radical-assisted C-O bond scission applies to any catalytic surface that preserves the π-electron system of the reactant and leads to C-O selectivity enhancement, with notable examples including Cu, H-covered Pd, self-assembled monolayers on Pd, and oxygen-covered Mo2C. Furthermore, we reveal the cooperativity of active sites in multifunctional catalysts. The mechanism is fully consistent with kinetic studies and isotopic labeling experiments, and the insights gained might prove useful more broadly in overcoming activity constraints induced by energy scaling relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.