34K06, 34K20, 34K40, 93C23International audienceThe asymtoptic stability properties of neutral type systems are studied mainly in the critical case when the exponential stability is not possible. We consider an operator model of the system in Hilbert space and use recent results on the existence of a Riesz basis of invariant finite-dimensional subspaces in order to verify its dissipativity. The main results concern the conditions of asymptotic non exponential stability. We show that the property of asymptotic stability is not determinated only by the spectrum of the system but essentially depends on the geometric spectral characteristic of its main neutral term. Moreover, we present an example of two systems of neutral type which have both the same spectrum in the open left-half plane and the main neutral term but one of them is asymptotically stable while the other is unstable
This work is an attempt to treat partial differential equations with discrete (concentrated) state-dependent delay. The main idea is to approximate the discrete delay term by a sequence of distributed delay terms (all with state-dependent delays). We study local existence and long-time asymptotic behavior of solutions and prove that the model with distributed delay has a global attractor while the one with discrete delay possesses the trajectory attractor.
Partial differential equations with discrete (concentrated) statedependent delays in the space of continuous functions are investigated. In general, the corresponding initial value problem is not well posed, so we find an additional assumption on the state-dependent delay function to guarantee the well posedness. For the constructed dynamical system we study the long-time asymptotic behavior and prove the existence of a compact global attractor.
International audienceThe problem of strong stabilizability of linear systems of neutral type is investigated. We are interested in the case when the system has an infinite sequence of eigenvalues with vanishing real parts. This is the case when the main part of the neutral equation is not assumed to be stable in the classical sense. We discuss the notion of regular strong stabilizability and present an approach to stabilize the system by regular linear controls. The method covers the case of multivariable control and is essentially based on the idea of infinite-dimensional pole assignment proposed in [G.M. Sklyar, A.V. Rezounenko, A theorem on the strong asymptotic stability and determination of stabilizing controls, C. R. Acad. Sci. Paris Ser. I Math. 333 (8) (2001) 807-812]. Our approach is based on the recent results on the Riesz basis of invariant finitedimensional subspaces and strong stability for neutral type systems presented in [R. Rabah, G.M. Sklyar, A.V. Rezounenko, Stability analysis of neutral type systems in Hilbert space, J. Differential Equations 214 (2) (2005) 391-428]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.