When a chimeric gene encoding a ubiquitin-beta-galactosidase fusion protein is expressed in the yeast Saccharomyces cerevisiae, ubiquitin is cleaved off the nascent fusion protein, yielding a deubiquitinated beta-galactosidase (beta gal). With one exception, this cleavage takes place regardless of the nature of the amino acid residue of beta gal at the ubiquitin-beta gal junction, thereby making it possible to expose different residues at the amino-termini of the otherwise identical beta gal proteins. The beta gal proteins thus designed have strikingly different half-lives in vivo, from more than 20 hours to less than 3 minutes, depending on the nature of the amino acid at the amino-terminus of beta gal. The set of individual amino acids can thus be ordered with respect to the half-lives that they confer on beta gal when present at its amino-terminus (the "N-end rule"). The currently known amino-terminal residues in long-lived, noncompartmentalized intracellular proteins from both prokaryotes and eukaryotes belong exclusively to the stabilizing class as predicted by the N-end rule. The function of the previously described posttranslational addition of single amino acids to protein amino-termini may also be accounted for by the N-end rule. Thus the recognition of an amino-terminal residue in a protein may mediate both the metabolic stability of the protein and the potential for regulation of its stability.
The ubiquitin-dependent degradation of a test protein beta-galactosidase (beta gal) is preceded by ubiquitination of beta gal. The many (from 1 to more than 20) ubiquitin moieties attached to a molecule of beta gal occur as an ordered chain of branched ubiquitin-ubiquitin conjugates in which the carboxyl-terminal Gly76 of one ubiquitin is jointed to the internal Lys48 of an adjacent ubiquitin. This multiubiquitin chain is linked to one of two specific Lys residues in beta gal. These same Lys residues have been identified by molecular genetic analysis as components of the aminoterminal degradation signal in beta gal. The experiments with ubiquitin mutated at its Lys48 residue indicate that the multiubiquitin chain in a targeted protein is essential for the degradation of the protein.
The N-end rule relates the regulation of the in vivo half-life of a protein to the identity of its N-terminal residue. Degradation signals (degrons) that are targeted by the N-end rule pathway include a set called N-degrons. The main determinant of an N-degron is a destabilizing N-terminal residue of a protein. In eukaryotes, the N-end rule pathway is a part of the ubiquitin system and consists of two branches, the Ac/N-end rule and the Arg/N-end rule pathways. The Ac/N-end rule pathway targets proteins containing N a -terminally acetylated (Nt-acetylated) residues. The Arg/Nend rule pathway recognizes unacetylated N-terminal residues and involves N-terminal arginylation. Together, these branches target for degradation a majority of cellular proteins. For example, more than 80% of human proteins are cotranslationally Nt-acetylated. Thus, most proteins harbor a specific degradation signal, termed Ac N-degron, from the moment of their birth. Specific N-end rule pathways are also present in prokaryotes and in mitochondria. Enzymes that produce N-degrons include methionine-aminopeptidases, caspases, calpains, Nt-acetylases, Ntamidases, arginyl-transferases, and leucyl-transferases. Regulated degradation of specific proteins by the N-end rule pathway mediates a legion of physiological functions, including the sensing of heme, oxygen, and nitric oxide; selective elimination of misfolded proteins; the regulation of DNA repair, segregation, and condensation; the signaling by G proteins; the regulation of peptide import, fat metabolism, viral and bacterial infections, apoptosis, meiosis, spermatogenesis, neurogenesis, and cardiovascular development; and the functioning of adult organs, including the pancreas and the brain. Discovered 25 years ago, this pathway continues to be a fount of biological insights.
Previous work has shown that a fusion protein bearing a "nonremovable" N-terminal ubiquitin (Ub) moiety is short-lived in vivo, the fusion's Ub functioning as a degradation signal. The proteolytic system involved, termed the UFD pathway (Ub fusion degradation), was dissected in the yeast Saccharomyces cerevisiae by analyzing mutations that perturb the pathway. Two of the five genes thus identified, UFD1 and UFD5, function at post-ubiquitination steps in the UFD pathway. UFD3 plays a role in controlling the concentration of Ub in a cell: ufd3 mutants have greatly reduced levels of free Ub, and the degradation of Ub fusions in these mutants can be restored by overexpressing Ub. UFD2 and UFD4 appear to influence the formation and topology of a multi-Ub chain linked to the fusion's Ub moiety. UFD1, UFD2, and UFD4 encode previously undescribed proteins of 40, 110, and 170 kDa, respectively. The sequence of the last approximately 280 residues of Ufd4p is similar to that of E6AP, a human protein that binds to both the E6 protein of oncogenic papilloma viruses and the tumor suppressor protein p53, whose Ub-dependent degradation involves E6AP. UFD5 is identical to the previously identified SON1, isolated as an extragenic suppressor of sec63 alleles that impair the transport of proteins into the nucleus. UFD5 is essential for activity of both the UFD and N-end rule pathways (the latter system degrades proteins that bear certain N-terminal residues). We also show that a Lys --> Arg conversion at either position 29 or position 48 in the fusion's Ub moiety greatly reduces ubiquitination and degradation of Ub fusions to beta-galactosidase. By contrast, the ubiquitination and degradation of Ub fusions to dihydrofolate reductase are inhibited by the UbR29 but not by the UbR48 moiety. ufd4 mutants are unable to ubiquitinate the fusion's Ub moiety at Lys29, whereas ufd2 mutants are impaired in the ubiquitination at Lys48. These and related findings suggest that Ub-Ub isopeptide bonds in substrate-linked multi-Ub chains involve not only the previously identified Lys48 but also Lys29 of Ub, and that structurally different multi-Ub chains have distinct functions in Ub-dependent protein degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.