a b s t r a c tIn this paper, the half-skip configuration of the Total Focusing Method (TFM) is used to image and size surface-breaking cracks. The TFM is an ultrasonic array post-processing technique which is used to synthetically focus at every image point in a target region. This paper considers the case of inspecting for cracks which have initiated from the far surface of a parallel-sided sample using an array on the near surface. Typically, only direct ray paths between the array and image points are included in the TFM algorithm and therefore the image obtained for this case consists only of root and tip indications; no specular reflection from the crack faces is captured. The tip indication often has such a poor signal-to-noise ratio that reliable crack depth measurement is challenging. With the Half-Skip TFM, instead of using directly-scattered signals, the image is formed using ultrasonic ray paths corresponding to the ultrasound that has reflected off the back surface and has then undergone specular reflection from the crack face back to the array. The technique is applied to experimental and simulated array data and is shown to measure the depth of small cracks (depth o1 mm) with greater reliability than methods which rely on tip diffraction.
A robust and efficient technique for predicting the far-field scattering behavior for an arbitrarily-shaped defect in a generally anisotropic medium is presented that can be implemented in a commercial FE package. The spatial size of the modeling domain around the defect is as small as possible to minimize computational expense and a minimum number of models are executed. The method is based on an integral representation of a wave field in a homogeneous anisotropic medium. A plane incident mode is excited by applying suitable forces at nodes on a surface that encloses the scatterer. The scattered wave field is measured at monitoring nodes on a concentric surface and then decomposed into far-field scattering amplitudes of different modes in different directions. Example results for 2D and 3D bulk wave scattering in isotropic material and guided wave scattering are presented. Modeling accuracy is examined in various ways, including a comparison with the analytical solutions and calculation of the energy balance.
The aim of ultrasonic non-destructive evaluation includes the detection and characterization of defects, and an understanding of the nature of defects is essential for the assessment of structural integrity in safety critical systems. In general, the defect characterization challenge involves an estimation of defect parameters from measured data. In this paper, we explore the extent to which defects can be characterized by their ultrasonic scattering behaviour. Given a number of ultrasonic measurements, we show that characterization information can be extracted by projecting the measurement onto a parametric manifold in principal component space. We show that this manifold represents the entirety of the characterization information available from far-field harmonic ultrasound. We seek to understand the nature of this information and hence provide definitive statements on the defect characterization performance that is, in principle, extractable from typical measurement scenarios. In experiments, the characterization problem of surface-breaking cracks and the more general problem of elliptical voids are studied, and a good agreement is achieved between the actual parameter values and the characterization results. The nature of the parametric manifold enables us to explain and quantify why some defects are relatively easy to characterize, whereas others are inherently challenging.
The design of transducers to excite and detect guided waves is a fundamental part of a nondestructive evaluation or structural health monitoring system and requires the ability to predict the radiated guided wave field of a transmitting transducer. For most transducers, this can be performed by making the assumption that the transducer is weakly coupled and then integrating the Green’s function of the structure over the area of the transducer. The majority of guided wave modeling is based on two-dimensional (2D) formulations where plane, straight-crested waves are modeled. Several techniques can be readily applied to obtain the solution to the forced 2D problem in terms of modal amplitudes. However, for transducer modeling it is desirable to obtain the complete three-dimensional (3D) field, which is particularly challenging in anisotropic materials. In this paper, a technique for obtaining a far-field asymptotic solution to the 3D Green’s function in terms of the modal solutions to the forced 2D problem is presented. Results are shown that illustrate the application of the technique to isotropic (aluminium) and anisotropic (cross-ply and unidirectional composite) plates. Where possible, results from the asymptotic model are compared to those from 3D time-marching finite element simulations and good agreement is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.