We introduce a family of fast ordered upwind methods for approximating solutions to a wide class of static Hamilton-Jacobi equations with Dirichlet boundary conditions. Standard techniques often rely on iteration to converge to the solution of a discretized version of the partial differential equation. Our fast methods avoid iteration through a careful use of information about the characteristic directions of the underlying partial differential equation. These techniques are of complexity O(M log M), where M is the total number of points in the domain. We consider anisotropic test problems in optimal control, seismology, and paths on surfaces.
The Fast Marching Method is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. The scheme relies on an upwind finite difference approximation to the gradient and a resulting causality relationship that lends itself to a Dijkstra-like programming approach. In this paper, we discuss several extensions to this technique, including higher order versions on unstructured meshes in R n and on manifolds and connections to more general static Hamilton-Jacobi equations.
We introduce a family of fast ordered upwind methods for approximating solutions to a wide class of static Hamilton-Jacobi equations with Dirichlet boundary conditions. Standard techniques often rely on iteration to converge to the solution of a discretized version of the partial differential equation. Our fast methods avoid iteration through a careful use of information about the characteristic directions of the underlying partial differential equation. These techniques are of complexity O(M log M), where M is the total number of points in the domain. We consider anisotropic test problems in optimal control, seismology, and paths on surfaces.
The computation of global invariant manifolds has seen renewed interest in recent years. We survey different approaches for computing a global stable or unstable manifold of a vector field, where we concentrate on the case of a two-dimensional manifold. All methods are illustrated with the same example — the two-dimensional stable manifold of the origin in the Lorenz system.
This work addresses the construction and use of low-dimensional invariant manifolds to simplify complex chemical kinetics. Typically, chemical kinetic systems have a wide range of time scales. As a consequence, reaction trajectories rapidly approach a hierarchy of attracting manifolds of decreasing dimension in the full composition space. In previous research, several different methods have been proposed to identify these low-dimensional attracting manifolds. Here we propose a new method based on an invariant constrained equilibrium edge (ICE) manifold. This manifold (of dimension nr) is generated by the reaction trajectories emanating from its (nr-1)-dimensional edge, on which the composition is in a constrained equilibrium state. A reasonable choice of the nr represented variables (e.g., nr "major" species) ensures that there exists a unique point on the ICE manifold corresponding to each realizable value of the represented variables. The process of identifying this point is referred to as species reconstruction. A second contribution of this work is a local method of species reconstruction, called ICE-PIC, which is based on the ICE manifold and uses preimage curves (PICs). The ICE-PIC method is local in the sense that species reconstruction can be performed without generating the whole of the manifold (or a significant portion thereof). The ICE-PIC method is the first approach that locally determines points on a low-dimensional invariant manifold, and its application to high-dimensional chemical systems is straightforward. The "inputs" to the method are the detailed kinetic mechanism and the chosen reduced representation (e.g., some major species). The ICE-PIC method is illustrated and demonstrated using an idealized H2O system with six chemical species. It is then tested and compared to three other dimension-reduction methods for the test case of a one-dimensional premixed laminar flame of stoichiometric hydrogen/air, which is described by a detailed mechanism containing nine species and 21 reactions. It is shown that the error incurred by the ICE-PIC method with four represented species is small across the whole flame, even in the low temperature region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.