Abstract-Product-line technology is increasingly used in mission-critical and safety-critical applications. Hence, researchers are developing verification approaches that follow different strategies to cope with the specific properties of product lines. While the research community is discussing the mutual strengths and weaknesses of the different strategies-mostly at a conceptual level-there is a lack of evidence in terms of case studies, tool implementations, and experiments. We have collected and prepared six product lines as subject systems for experimentation. Furthermore, we have developed a modelchecking tool chain for C-based and Java-based product lines, called SPLVERIFIER, which we use to compare sample-based and family-based strategies with regard to verification performance and the ability to find defects. Based on the experimental results and an analytical model, we revisit the discussion of the strengths and weaknesses of product-line-verification strategies.
The advent of variability management and generator technology enables users to derive individual variants from a variable code base based on a selection of desired configuration options. This approach gives rise to the generation of possibly billions of variants that, however, cannot be efficiently analyzed for errors with classic analysis techniques. To address this issue, researchers and practitioners usually apply sampling heuristics. While sampling reduces the analysis effort significantly, the information obtained is necessarily incomplete and it is unknown whether sampling heuristics scale to billions of variants. Recently, researchers have begun to develop variability-aware analyses that analyze the variable code base directly exploiting the similarities among individual variants to reduce analysis effort. However, while being promising, so far, variability-aware analyses have been applied mostly only to small academic systems. To learn about the mutual strengths and weaknesses of variability-aware and sampling-based analyses of software systems, we compared the two strategies by means of two concrete analysis implementations (type checking and liveness analysis), applied them to three subject systems: Busybox, the x86 Linux kernel, and OpenSSL. Our key finding is that variability-aware analysis outperforms most sampling heuristics with respect to analysis time while preserving completeness.
Abstract-A software product line is a set of software products that are distinguished in terms of features (i.e., end-user-visible units of behavior). Feature interactions -situations in which the combination of features leads to emergent and possibly critical behavior-are a major source of failures in software product lines. We explore how feature-aware verification can improve the automatic detection of feature interactions in software product lines. Feature-aware verification uses product-line-verification techniques and supports the specification of feature properties along with the features in separate and composable units. It integrates the technique of variability encoding to verify a product line without generating and checking a possibly exponential number of feature combinations. We developed the tool suite SPLVERIFIER for feature-aware verification, which is based on standard model-checking technology. We applied it to an e-mail system that incorporates domain knowledge of AT&T. We found that feature interactions can be detected automatically based on specifications that have only local knowledge.
We investigate how to execute a unit test for all products of a product line without generating each product in isolation in a brute-force fashion. Learning from variability-aware analyses, we (a) design and implement a variability-aware interpreter and, alternatively, (b) reencode variability of the product line to simulate the test cases with a model checker. The interpreter internally reasons about variability, executing paths not affected by variability only once for the whole product line. The model checker achieves similar results by reusing powerful off-the-shelf analyses. We experimented with a prototype implementation for each strategy. We compare both strategies and discuss trade-offs and future directions. In the long run, we aim at finding an efficient testing approach that can be applied to entire product lines with millions of products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.