Survey and novel research data are used in the present study to classify/identify the lithological type of Verey age reservoirs' rocks. It is shown how the use of X-ray tomography can clarify the degree of heterogeneity, porosity and permeability of these rocks. These data are then used to elaborate a model of hydraulic fracturing. The resulting software can take into account the properties of proppant and breakdown fluid, thermal reservoir conditions, oil properties, well design data and even the filtration and elastic-mechanical properties of the rocks. Calculations of hydraulic fracturing crack formation are carried out and the results are compared with the data on hydraulic fracturing crack at standard conditions. Significant differences in crack formation in standard and lithotype models are determined. It is shown that the average width of the crack development for the lithotype model is 2.3 times higher than that for the standard model. Moreover, the coverage of crack development in height for the lithotype model is almost 2 times less than that for the standard model. The estimated fracture half-length for the lithotype model is 13.3% less than that of for the standard model. A higher dimensionless fracture conductivity is also obtained for the lithotype model. It is concluded that the proposed approach can increase the reliability of hydraulic fracturing crack models.
The geological structure of Kashiro-Verey carbonate deposits is considered on the example of one of the deposits of the Perm Region. By combining geophysical studies of wells, standard and tomographic studies of core, the following lithotypes of carbonate rocks were identified: highly porous cavernous, layered heterogeneous porous, heterogeneous fractured porous, dense. It was found that for heterogeneous lithotypes, the porosity estimate in the volume of the permeable part of the rocks significantly exceeds 7%. Experiments on the destruction of rocks were carried out for the selected lithotypes. As a result, it was found that cracks do not form for samples of the cavernous lithotype at a compression pressure of 20 MPa. For a compacted lithotype, already at a compression pressure of more than 10 MPa, an intensive development of fracturing occurs. As a result of multiaxial loading of cores, which can be considered as analogous fracturing of the formation, wide fractures are formed, along which filtration of fluids can occur. Keywords: proppant hydraulic fracturing; X-ray tomography of the core; porosity; permeability; fractured reservoir; oil deposit; carbonate deposits.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
One of the effective methods of oil production intensification for heterogeneous Kashiro-Vereyskian clay-carbonate sediments of the Volga-Ural oil and gas bearing province is proppant hydraulic fracturing. Prospects of realization for this technology are considered in the article on the example of the Vereyskian development object of Moskud’inskoye field. Based on the analysis of rocks samples investigations of Vereyiskian sediments, lithological types of carbonate rocks differing in their structural features are distinguished. Tomographic investigations of rock samples were carried out, as a result of which the rock fracturing for some lithotypes was determined and studieds. Under natural geological conditions, depending on the degree of fracturing progression and technological conditions of development, these intervals may or may not be involved in well operation. When hydraulic fracturing is performed, potentially fractured areas that are not in operation can be successfully added to oil production. Based on analysis of hydrodynamic well investigations, the fracturing of the Vereyskian object of the Moskud’inskoye field was studied on the basis of the Warren-Ruth model. With the help of geological and technological indicators of development, prediction fracturing was obtained, which was used for the construction of the natural fracturing scheme. Areas of both pore and fractured reservoirs development were identified on the deposit area. As a result of statistical analysis, the influence of fracturing on efficiency of proppant hydraulic fracturing was determined. Based on the linear discriminant analysis, a statistical model for predicting the efficiency of proppant fracturing was developed. It was shown that in addition to natural fracturing, the results are most strongly influenced by specific proppant yield, formation pressure, permeability of the remote bottomhole zone and skin effect. Based on the developed model, prospective production wells of the Moskud’inskoye field are identified for proppant hydraulic fracturing.
By using decomposition of hoop and radial components of the displacement vector to the trigonometrical and generalized power series, we obtained the new exact analytical solutions to problems of the equilibrium state of thick-walled heavy anisotropic central-and axial-symmetric bodies fixed on their external surfaces and subject to uniform internal lateral pressure. The estimation of an initial strength of cylindrical and spherical reinforced concrete monolithic mine working supports for a long-term storage of gas and oil is carried out on the basis of a multicriteria approach taking into account real damage mechanisms. They include damage from tension or compression in radial, hoop and axial directions, and from transversal and antiplane shear) of anisotropic axial- and central-symmetric bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.