The building sector is a voracious consumer of primary materials. However, the study of building material use and associated impacts is challenged by the paucity of publicly available data in the field and the heterogeneity of data organization and classification between published studies. This paper makes two main contributions. First, we propose and demonstrate a building material data structure adapted from UniFormat and MasterFormat, two widely used construction classification systems in North America. Second, the dataset included provides fine grained material data for 70 buildings in North America. The dataset was developed by collecting design or construction drawings for the studied buildings and performing material takeoffs based on these drawings. The ontology is based on UniFormat and MasterFormat to facilitate interoperability with existing construction management practices, and to suggest a standardized structure for future material intensity studies. The data structure supports investigation into how form and building design are driving material use, opportunities to reduce construction material consumption and better understanding of how materials are used in buildings.
This paper develops novel methods for using Yelp reviews as a window into the collective representations of a city and its neighbourhoods. Basing analysis on social media data such as Yelp is a challenging task because review data is highly sparse and direct analysis may fail to uncover hidden trends. To this end, we propose a deep autoencoder approach for embedding the language of neighbourhood-based business reviews into a reduced dimensional space that facilitates similarity comparison of neighbourhoods and their change over time. Our model improves performance in distinguishing real and fake neighbourhood descriptions derived from real reviews, increasing performance in the task from an average accuracy of 0.46 to 0.77. This improvement in performance indicates that this novel application of embedded language analysis permits us to uncover comparative trends in neighbourhood change through the lens of their venues' reviews, providing a computational methodology for reading a city through its neighbourhoods. The resulting toolkit makes it possible to examine a city's current sociological trends in terms of its neighbourhoods' collective identities.
This article applies a method we term "predictive clustering" to cluster neighborhoods. Much of the literature in this direction is based on groupings built using intrinsic characteristics of each observation. Our approach departs from this framework by delineating clusters based on how the neighborhood's features respond to a particular outcome of interest (e.g., income change). To do so, we leverage a classification and regression via integer optimization (CRIO) method that groups neighborhoods according to their predictive characteristics and consistently outperforms traditional clustering methods along several metrics. The CRIO methodology contributes a novel methodological and conceptual capability to the literature on neighborhood dynamics that can provide useful insights for policymaking.
Particle filtration can effectively reduce indoor concentrations of particulate matter (PM) but may incur high energy use. This study evaluates fixed and adaptive concentration thresholds to automate the operation of filtration systems. Simulated environments were derived from week-long continuous PM measurements from Dylos DC1700 (N = 104) and Alphasense OPC-N2 (N = 100) particle counters deployed in apartments in Toronto. A fixed threshold of 4.0 μg•m −3 resulted in a mean air cleaner runtime of 6.9%-21.0% depending on clean air delivery rate (CADR) and particle sensor, while providing mean concentration reductions of 67%-71% compared to operating the air cleaner constantly (runtime = 100%). In most environments, runtime could be further reduced by raising the fixed threshold while resulting in only a modest decrease in absolute and normalized mean exposure reduction. Using an adaptive threshold derived from a k-means clustering approach generally provided substantial exposure reduction while preventing high runtimes. These results were generally insensitive to cleaning power and the monitor used to measure particle concentrations.Reducing the energy usage of particle filter systems will make them a more viable and sustainable means of improving occupant health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.