Atmospheric carbon dioxide (CO 2 ) directly determines the rate of plant photosynthesis and indirectly effects plant productivity and fitness and may therefore act as a selective pressure driving evolution, but evidence to support this contention is sparse. Using Plantago lanceolata L. seed collected from a naturally high CO 2 spring and adjacent ambient CO 2 control site, we investigated multigenerational response to future, elevated atmospheric CO 2 . Plants were grown in either ambient or elevated CO 2 (700 lmol mol À1 ), enabling for the first time, characterization of the functional and population genomics of plant acclimation and adaptation to elevated CO 2 . This revealed that spring and control plants differed significantly in phenotypic plasticity for traits underpinning fitness including above-ground biomass, leaf size, epidermal cell size and number and stomatal density and index. Gene expression responses to elevated CO 2 (acclimation) were modest [33-131 genes differentially expressed (DE)], whilst those between control and spring plants (adaptation) were considerably larger (689-853 DE genes). In contrast, population genomic analysis showed that genetic differentiation between spring and control plants was close to zero, with no fixed differences, suggesting that plants are adapted to their native CO 2 environment at the level of gene expression. An unusual phenotype of increased stomatal index in spring but not control plants in elevated CO 2 correlated with altered expression of stomatal patterning genes between spring and control plants for three loci (YODA, CDKB1;1 and SCRM2) and between ambient and elevated CO 2 for four loci (ER, YODA, MYB88 and BCA1). We propose that the two positive regulators of stomatal number (SCRM2) and CDKB1;1 when upregulated act as key controllers of stomatal adaptation to elevated CO 2 . Combined with significant transcriptome reprogramming of photosynthetic and dark respiration and enhanced growth in spring plants, we have identified the potential basis of plant adaptation to high CO 2 likely to occur over coming decades.
Background: Cellular membranes are dynamic structures, continuously adjusting their composition, allowing plants to respond to developmental signals, stresses, and changing environments. To facilitate transmembrane transport of substrates, plant membranes are embedded with both active and passive transporters. Aquaporins (AQPs) constitute a major family of membrane spanning channel proteins that selectively facilitate the passive bidirectional passage of substrates across biological membranes at an astonishing 10 8 molecules per second. AQPs are the most diversified in the plant kingdom, comprising of five major subfamilies that differ in temporal and spatial gene expression, subcellular protein localisation, substrate specificity, and post-translational regulatory mechanisms; collectively providing a dynamic transportation network spanning the entire plant. Plant AQPs can transport a range of solutes essential for numerous plant processes including, water relations, growth and development, stress responses, root nutrient uptake, and photosynthesis. The ability to manipulate AQPs towards improving plant productivity, is reliant on expanding our insight into the diversity and functional roles of AQPs. Results: We characterised the AQP family from Nicotiana tabacum (NtAQPs; tobacco), a popular model system capable of scaling from the laboratory to the field. Tobacco is closely related to major economic crops (e.g. tomato, potato, eggplant and peppers) and itself has new commercial applications. Tobacco harbours 76 AQPs making it the second largest characterised AQP family. These fall into five distinct subfamilies, for which we characterised phylogenetic relationships, gene structures, protein sequences, selectivity filter compositions, sub-cellular localisation, and tissue-specific expression. We also identified the AQPs from tobacco's parental genomes (N. sylvestris and N. tomentosiformis), allowing us to characterise the evolutionary history of the NtAQP family. Assigning orthology to tomato and potato AQPs allowed for cross-species comparisons of conservation in protein structures, gene expression, and potential physiological roles.
We compared how stomatal morphology and physiology control intrinsic leaf water use efficiency (iWUE) in two C3 and six C4 grasses grown at ambient (400 µmol mol -1) or glacial CO2 (180 µmol mol -1) and high (1000 µmol m -2 s -1) or low light intensity (200 µmol m -2 s -1). C4 grasses tended to have higher iWUE and CO2 assimilation rates, and lower stomatal conductance (gs), operational stomatal aperture (aop) and guard cell K + influx rate relative to C3 grasses, while stomatal size (SS) and stomatal density (SD) did not vary according to the photosynthetic type. Overall, iWUE and gs depended most on aop and density of open stomata. In turn, aop correlated with K + influx, stomatal opening speed on transition to high light and SS. Species with higher SD had smaller and faster-opening stomata. Although C4 grasses operated with lower gs and aop at ambient CO2, they showed a greater potential to open stomata relative to maximal stomatal conductance (gmax), indicating heightened stomatal sensitivity and control. We uncovered promising links between aop, gs, iWUE and K + influx among C4 grasses, and differential K + influx responses of C4 guard cells to low light, revealing molecular targets for improving iWUE in C4 crops.
Starch granule initiation is poorly understood at the molecular level. The glucosyltransferase, STARCH SYNTHASE 4 (SS4), plays a central role in granule initiation in Arabidopsis leaves, but its function in cereal endosperms is unknown. We investigated the role of SS4 in wheat, which has a distinct spatiotemporal pattern of granule initiation during grain development.(2) We generated TILLING mutants in tetraploid wheat (Triticum turgidum) that are defective in both SS4 homoeologs. The morphology of endosperm starch was examined in developing and mature grains.(3) SS4 deficiency led to severe alterations in endosperm starch granule morphology. During early grain development, while the wild type initiated single 'A-type' granules per amyloplast, most amyloplasts in the mutant formed compound granules due to multiple initiations. This phenotype was similar to mutants deficient in B-GRANULE CONTENT 1 (BGC1). SS4 deficiency also reduced starch content in leaves and pollen grains.(4) We propose that SS4 and BGC1 are required for the proper control of granule initiation during early grain development that leads to a single A-type granule per amyloplast. The absence of either protein results in a variable number of initiations per amyloplast and compound granule formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.