Natural populations harbor considerable genetic variation for lifespan. While evolutionary theory provides general explanations for the existence of this variation, our knowledge of the genes harboring naturally occurring polymorphisms affecting lifespan is limited. Here, we assessed the genetic divergence between five Drosophila melanogaster lines selected for postponed senescence for over 170 generations (O lines) and five lines from the same base population maintained at a two week generation interval for over 850 generations (B lines). On average, O lines live 70% longer than B lines, are more productive at all ages, and have delayed senescence for other traits than reproduction. We performed population sequencing of pools of individuals from all B and O lines and identified 6,394 genetically divergent variants in or near 1,928 genes at a false discovery rate of 0.068. A 2.6 Mb region at the tip of the X chromosome contained many variants fixed for alternative alleles in the two populations, suggestive of a hard selective sweep. We also assessed genome wide gene expression of O and B lines at one and five weeks of age using RNA sequencing and identified genes with significant (false discovery rate < 0.05) effects on gene expression with age, population and the age by population interaction, separately for each sex. We identified transcripts that exhibited the transcriptional signature of postponed senescence and integrated the gene expression and genetic divergence data to identify 98 (175) top candidate genes in females (males) affecting postponed senescence and increased lifespan. While several of these genes have been previously associated with Drosophila lifespan, most are novel and constitute a rich resource for future functional validation.
Highly efficient gene conversion systems have the potential to facilitate the study of complex genetic traits using laboratory mice and, if implemented as a “gene drive,” to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously showed that such a system of gene conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double-strand DNA break (DSB) is feasible in the female mouse germline. In the male germline, however, all DSBs were instead repaired by end joining (EJ) mechanisms to form an “insertion/deletion” (indel) mutation. These observations suggested that timing Cas9 expression to coincide with meiosis I is critical to favor conditions when homologous chromosomes are aligned and interchromosomal homology-directed repair (HDR) mechanisms predominate. Here, using a Cas9 knock-in allele at the Spo11 locus, we show that meiotic expression of Cas9 does indeed mediate gene conversion in the male as well as in the female germline. However, the low frequency of both HDR and indel mutation in both male and female germlines suggests that Cas9 may be expressed from the Spo11 locus at levels too low for efficient DSB formation. We suggest that more robust Cas9 expression initiated during early meiosis I may improve the efficiency of gene conversion and further increase the rate of “super-mendelian” inheritance from both male and female mice.
The vertebrate eye was described by Charles Darwin as one of the greatest potential challenges to a theory of natural selection by stepwise evolutionary processes. While numerous evolutionary transitions that led to the vertebrate eye have been explained, some aspects appear to be vertebrate specific with no obvious metazoan precursor. One critical difference between vertebrate and invertebrate vision hinges on interphotoreceptor retinoid-binding protein (IRBP, also known as retinol-binding protein, RBP3), which enables the physical separation and specialization of cells in the vertebrate visual cycle by promoting retinoid shuttling between cell types. While IRBP has been functionally described, its evolutionary origin has remained elusive. Here, we show that IRBP arose via acquisition of novel genetic material from bacteria by interdomain horizontal gene transfer (iHGT). We demonstrate that a gene encoding a bacterial peptidase was acquired prior to the radiation of extant vertebrates >500 Mya and underwent subsequent domain duplication and neofunctionalization to give rise to vertebrate IRBP. Our phylogenomic analyses on >900 high-quality genomes across the tree of life provided the resolution to distinguish contamination in genome assemblies from true instances of horizontal acquisition of IRBP and led us to discover additional independent transfers of the same bacterial peptidase gene family into distinct eukaryotic lineages. Importantly, this work illustrates the evolutionary basis of a key transition that led to the vertebrate visual cycle and highlights the striking impact that acquisition of bacterial genes has had on vertebrate evolution.
Highly efficient genotype conversion systems have potential to facilitate the study of complex genetic traits using laboratory mice and to limit loss of biodiversity and disease transmission caused by wild rodent populations. We previously showed that such a system of genotype conversion from heterozygous to homozygous after a sequence targeted CRISPR/Cas9 double strand DNA break is feasible in the female mouse germline. In the male germline, however, all double strand breaks were instead repaired by end joining mechanisms to form an 'insertion/deletion' (indel) mutation. These observations suggested that timing Cas9 expression to coincide with meiosis I is critical to favor conditions when homologous chromosomes are aligned and interchromosomal homology directed repair (HDR) mechanisms predominate. Here, using a Cas9 knock-in allele at the Spo11 locus, we show that meiotic expression of Cas9 does indeed mediate genotype conversion in the male as well as in the female germline. However, the low frequency of both HDR and indel mutation in both male and female germlines suggests that Cas9 may be expressed from the Spo11 locus at levels too low for efficient double strand DNA break formation. We suggest that more robust Cas9 expression initiated during early meiosis I may improve the efficiency of genotype conversion and further increase the rate of 'super-Mendelian' inheritance from both male and female mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.