Despite its importance in providing income and food for smallholder farmers, fodder for livestock, and improving soil fertility through biological nitrogen fixation, groundnut yields are lowest on farmers’ fields in Sub-Saharan Africa due to biotic and abiotic constraints. Foliar fungal diseases account for over 80% reduction in groundnut productivity in some parts of Ghana. Unfortunately, chemical control of these foliar diseases has not yielded the desired results. Meanwhile, advances in phenotyping for disease tolerance in other crops have established a strong relationship between stay-green trait and foliar disease tolerance. However, this relationship has not been explored in groundnut. This study was designed to determine the genetic control of the stay-green trait and its relationship with leaf spot disease severity in groundnut. Twenty-five advanced groundnut breeding lines with varying degrees of tolerance for leaf spot tolerance were evaluated under diseased and disease-free conditions, after which four were selected for genetic studies. Results showed significant (p<0.001) differences among the genotypes for early leaf spot (ELS), late leaf spot (LLS), leaf area under greenness (LAUG), SPAD chlorophyll meter readings (SCMR), and yield traits. Leaf spot diseases caused 4.95 t·ha−1 (64.54%) pod yield reduction in CHINESE, the widely cultivated groundnut variety in Ghana. There was a strong correlation between LAUG and ELS (r = 0.82, p<0.001) and LLS (r = 0.63, p<0.001), and genotypes that were stay-green had tolerance to both diseases. Stay-green trait in groundnut was detected to be under the control of a single recessive gene and hence may be used to select for ELS and LLS resistance.
Erratic rainfall is often a limiting factor in the semi-arid regions where most groundnut cultivation occurs. As a result, ensuring availability of cultivars that possess inherent tolerance to drought stress has become a priority. Field and box (wooden boxes of 2 m length × 1 m width × 0.3 m depth) experiments were conducted under drought and non-drought conditions to identify physiological and agronomic traits correlated with pod yield (PY). Fifty (50) advanced breeding lines were evaluated. Linear models containing different combinations of total dry matter at maturity, crop growth rate, pod growth rate, partition coefficient, and harvest index were able to predict PY under intermittent drought (adjusted R 2 range: 0.9798-0.9895). The box experiment was more discriminating of genotypes than field experiments, making it a suitable technique for drought tolerance screening using specific leaf area and leaf chlorophyll content. As a result, screening and pre-selection using the seed-box technique before advanced evaluation on the field is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.