The phage-derived T7 RNA polymerase is the most prominent orthogonal transcriptions system used in the field of synthetic biology. However, gene expression driven by T7 RNA polymerase is prone to read-through transcription due to contextuality of the T7 terminator. The native T7 terminator has a termination efficiency of approximately 80% and therefore provides insufficient insulation of the expression unit. By using a combination of a synthetic T7 termination signal with two well-known transcriptional terminators (rrnBT1 and T7), we have been able to increase the termination efficiency to 99%. To characterize putative effects of an enhanced termination signal on product yield and process stability, industrial-relevant fed batch cultivations have been performed. Fermentation of a E. coli HMS174(DE3) strain carrying a pET30a derivative containing the improved termination signal showed a significant decrease of plasmid copy number (PCN) and an increase in total protein yield under standard conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.