The rational design of drugs that can inhibit the action of viral proteases depends on obtaining accurate structures of these enzymes. The crystal structure of chemically synthesized HIV-1 protease has been determined at 2.8 angstrom resolution (R factor of 0.184) with the use of a model based on the Rous sarcoma virus protease structure. In this enzymatically active protein, the cysteines were replaced by alpha-amino-n-butyric acid, a nongenetically coded amino acid. This structure, in which all 99 amino acids were located, differs in several important details from that reported previously by others. The interface between the identical subunits forming the active protease dimer is composed of four well-ordered beta strands from both the amino and carboxyl termini and residues 86 to 94 have a helical conformation. The observed arrangement of the dimer interface suggests possible designs for dimerization inhibitors.
Retroviral protease (PR) from the human immunodeficiency virus type 1 (HIV-1) was identified over a decade ago as a potential target for structure-based drug design. This effort was very successful. Four drugs are already approved, and others are undergoing clinical trials. The techniques utilized in this remarkable example of structure-assisted drug design included crystallography, NMR, computational studies, and advanced chemical synthesis. The development of these drugs is discussed in detail. Other approaches to designing HIV-1 PR inhibitors, based on the concepts of symmetry and on the replacement of a water molecule that had been found tetrahedrally coordinated between the enzyme and the inhibitors, are also discussed. The emergence of drug-induced mutations of HIV-1 PR leads to rapid loss of potency of the existing drugs and to the need to continue the development process. The structural basis of drug resistance and the ways of overcoming this phenomenon are mentioned.
The structure of a complex between a peptide inhibitor with the sequence N-acetyl-Thr-Ile-Nle-psi[CH2-NH]-Nle-Gln-Arg.amide (Nle, norleucine) with chemically synthesized HIV-1 (human immunodeficiency virus 1) protease was determined at 2.3 A resolution (R factor of 0.176). Despite the symmetric nature of the unliganded enzyme, the asymmetric inhibitor lies in a single orientation and makes extensive interactions at the interface between the two subunits of the homodimeric protein. Compared with the unliganded enzyme, the protein molecule underwent substantial changes, particularly in an extended region corresponding to the "flaps" (residues 35 to 57 in each chain), where backbone movements as large as 7 A are observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.