Bilateral pallidal neurostimulation for 3 months was more effective than sham stimulation in patients with primary generalized or segmental dystonia. (ClinicalTrials.gov number, NCT00142259 [ClinicalTrials.gov].).
Classen. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89: 2339 -2345, 2003. First published January 22, 2003 10.1152/jn.00900.2002 Synaptic plasticity is conspicuously dependent on the temporal order of the pre-and postsynaptic activity. Human motor cortical excitability can be increased by a paired associative stimulation (PAS) protocol. Here we show that it can also be decreased by minimally changing the interval between the two associative stimuli. Corticomotor excitability of the abductor pollicis brevis (APB) representation was tested before and after repetitively pairing of single right median nerve simulation with single pulse transcranial magnetic stimulation (TMS) delivered over the optimal site for activation of the contralateral APB. Following PAS, depression of TMS-evoked motor-evoked potentials (MEPs) was induced only when the median nerve stimulation preceded the TMS pulse by 10 ms, while enhancement of cortical excitability was induced using an interstimulus interval of 25 ms, suggesting an important role of the sequence of cortical events triggered by the two stimulation modalities. Experiments using F-wave studies and electrical brain stem stimulation indicated that the site of the plastic changes underlying the decrease of MEP amplitudes following PAS (10 ms) was within the motor cortex. MEP amplitudes remained depressed for approximately 90 min. The decrease of MEP amplitudes was blocked when PAS(10 ms) was performed under the influence of dextromethorphan, an N-methyl-D-aspartate-receptor antagonist, or nimodipine, an L-type voltage-gated calcium-channel antagonist. The physiological profile of the depression of human motor cortical excitability following PAS(10 ms) suggests long-term depression of synaptic efficacy to be involved. Together with earlier findings, this study suggests that strict temporal Hebbian rules govern the induction of long-term potentiation/long-term depression-like phenomena in vivo in the human primary motor cortex.
I N T R O D U C T I O NActivity-dependent long-term modification of synaptic efficacy has been proposed to underlie information storage in neuronal populations. Hebb (1949) postulated that the strength of a synapse may be modulated by correlated activity of a (weak) input to a postsynaptic cell with activation of that cell, as a consequence of activity of another (strong) input to it. This principle, termed associativity, has been confirmed experimentally in numerous studies. Additionally, a stringent and surprisingly simple asymmetric temporal rule governing the direction of synaptic change has been revealed in many brain regions. With few notable exceptions (e.g., Bell et al. 1997; Egger et al. 1999; Holmgren and Zilberter 2001), it was found that associative long-term potentiation (LTP) was induced when an action potential of the postsynaptic neuron (induced by a strong input to the cell) followed the postsynaptic potential induced by a weak input. If the order of stimulation was reversed (i.e., ...
Animal experiments suggest that cortical sensory representations may be remodelled as a consequence of changing synaptic efficacy by timing-dependent associative neuronal activity. Here we describe a timing-based associative form of plasticity in human somatosensory cortex. Paired associative stimulation (PAS) was performed by combining repetitive median nerve stimulation with transcranial magnetic stimulation (TMS) over the contralateral postcentral region. PAS increased exclusively the amplitude of the P25 component of the median nerve-evoked somatosensory-evoked potential (MN-SSEP), which is probably generated in the superficial cortical layers of area 3b. SSEP components reflecting neuronal activity in deeper cortical layers (N20 component) or subcortical regions (P14 component) remained constant. PAS-induced enhancement of P25 amplitude displayed topographical specificity both for the recording (MN-SSEP versus tibial nerve-SSEP) and the stimulation (magnetic stimulation targeting somatosensory versus motor cortex) arrangements. Modulation of P25 amplitude was confined to a narrow range of interstimulus intervals (ISIs) between the MN pulse and the TMS pulse, and the sign of the modulation changed with ISIs differing by only 15 ms. The function describing the ISI dependence of PAS effects on somatosensory cortex resembled one previously observed in motor cortex, shifted by approximately 7 ms. The findings suggest a simple model of modulation of excitability in human primary somatosensory cortex, possibly by mechanisms related to the spike-timing-dependent plasticity of neuronal synapses located in upper cortical layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.