In genetic screens for ribosomal export mutants, we identified CFD1, NBP35 and NAR1 as factors involved in ribosome biogenesis. Notably, these components were recently reported to function in extramitochondrial iron-sulfur (Fe-S) cluster biosynthesis. In particular, Nar1 was implicated to generate the Fe-S clusters within Rli1, a potential substrate protein of unknown function. We tested whether the Fe-S protein Rli1 functions in ribosome formation. We report that rli1 mutants are impaired in prerRNA processing and defective in the export of both ribosomal subunits. In addition, Rli1p is associated with both pre-40S particles and mature 40S subunits, and with the eIF3 translation initiation factor complex. Our data reveal an unexpected link between ribosome biogenesis and the biosynthetic pathway of cytoplasmic Fe-S proteins.
Three variants of Thermus thermophilus EF-G with mutations in the loop at the distal end of its domain IV were obtained. The replacement of His-573 by Ala and double mutation H573A/D576A did not influence the functional activity of EF-G. On the other hand, the insertion of six amino acids into the loop between residues Asp-576 and Ser-577 reduced the translocational activity of EF-G markedly, while its GTPase activity was not affected. It is concluded that the native conformation of the loop is important for the factor-promoted translocation in the ribosome. The functional importance of the entire EF-G domain IV is discussed.z 1998 Federation of European Biochemical Societies.
During Drosophila development, translational control plays a crucial role in regulating gene expression, and is particularly important during pre-patterning of the maturing oocyte. A critical step in translation initiation is the binding of the eukaryotic translation initiation factor 4E (eIF4E) to the mRNA cap structure, which ultimately leads to recruitment of the ribosome. d4EHP is a translational repressor that prevents translation initiation by out-competing eIF4E on the cap structure for a subset of mRNAs. However, only two examples of mRNAs subject to d4EHP translation repression in Drosophila are known. Here we show that the belle (bel) mRNA is translationally repressed by the d4EHP protein in the Drosophila ovary. Consistent with this regulation, d4EHP overexpression in the ovary phenocopies the bel mutant. We also provide evidence that the Bel protein binds to eIF4E and may itself function as a translation repressor protein, with bruno as a potential target for Bel repression in the oocyte. Bruno is known to repress the mRNA of the key oocyte axis determinant oskar (osk) during oogenesis, and we find that an increase in the level of Bruno protein in bel mutant ovaries is associated with a reduction in Osk protein. Overall, our data suggest that a translational regulatory network exists in which consecutive translational repression events act to correctly pattern the Drosophila oocyte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.