An asymptotic solution of the linear Cauchy problem in the presence of a "weak" turning point for the limit operator is constructed by the method of S. A. Lomov regularization. The main singularities of this problem are written out explicitly. Estimates are given for ε that characterize the behavior of singularities for ϵ → 0 . The asymptotic convergence of a regularized series is proven. The results are illustrated by an example. Bibliography: six titles.
The aim of this study is to develop a regularization method for boundary value problems for a parabolic equation. A singularly perturbed boundary value problem on the semiaxis is considered in the case of a “simple” rational turning point. To prove the asymptotic convergence of the series, the maximum principle is used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.