Hafnium oxide plays an important role as a dielectric material in various thin-film electronic devices such as transistors and resistive or ferroelectric memory. The crystallographic and electronic structure of the hafnia layer often depends critically on its composition and defect structure. Here, we report two novel defectstabilized polymorphs of substoichiometric HfO 2−x with semiconducting properties that are of particular interest for resistive switching digital or analog memory devices. The thin-film samples are synthesized by molecular beam epitaxy with oxygen engineering that allows us to cover the whole range of metallic Hf with oxygen interstitials to HfO 2 . The crystal and defect structures, in particular of a cubic low-temperature phase c-HfO 1.7 and a hexagonal phase hcp-HfO 0.7 are identified by X-ray diffraction, in vacuo electron spectroscopic, and transmission electron microscopic methods. With the help of UV/Vis transmission data, we propose a consistent band structure model for the whole oxidation range involving oxygen vacancy-induced in-gap defect states. Our comprehensive study of engineered hafnia thin films has an impact on the design of resistive memory devices and can be transferred to chemically similar suboxide systems.
New and facile wet chemistry based synthesis method for the preparation and processing of MAX phase Cr2GaC.
A model device based on an epitaxial stack combination of titanium nitride (111) and monoclinic hafnia (11true1¯) is grown onto a c‐cut Al2O3‐substrate to target the role of grain boundaries in resistive switching. The texture transfer results in 120° in‐plane rotated m‐HfO2 grains, and thus, in a defined subset of allowed grain boundary orientations of high symmetry. These engineered grain boundaries thread the whole dielectric layer, thereby providing predefined breakdown paths for electroforming‐free resistive random access memory devices. Combining X‐ray diffraction and scanning transmission electron microscopy (STEM)–based localized automated crystal orientation mapping (ACOM), a nanoscale picture of crystal growth and grain boundary orientation is obtained. High‐resolution STEM reveals low‐energy grain boundaries with facing (1¯1¯2¯) and (true1¯21) surfaces. The uniform distribution of forming voltages below 2 V—within the operation regime—and the stable switching voltages indicates reduced intra‐ and device‐to‐device variation in grain boundary engineered hafnium‐oxide‐based random access memory devices.
In this work, analysis and simulation of all experimentally observed switching modes in hafnium oxide based resistive random access memories are carried out using a simplified electrical conduction model. To achieve switching mode variation, two metal-insulator-metal cells with identical stack combination, but varying oxygen stoichiometry of the hafnia layer, namely, stoichiometric vs highly deficient, are considered. To access the individual switching modes, the devices were subjected to a variety of cycling conditions comprising different voltage and current ranges. For modeling the device behavior, a single or two antiserially connected memdiodes (diode with memory) were utilized. In this way, successful compact simulation of unipolar, bipolar, threshold, and complementary resistive switching modes is accomplished confirming the coexistence of two switching mechanisms of opposite polarity as the basis for all observable switching phenomena in this material. We show that only calibration of the outer current–voltage loops with the memdiode model is necessary for predicting the device behavior in the defined region revealing additional information on the switching process. The correspondence of each memdiode device with the conduction characteristics of the individual top and bottom metal-oxide contacts allows one to assess the role played by each interface in the switching process separately. This identification paves the path for a future improvement of the device performance and functionality by means of appropriate interface engineering.
In the field of oxide electronics, there has been tremendous progress in the recent years in atomic engineering of functional oxide thin films with controlled interfaces at the unit cell level. However, some relevant devices such as tunable ferroelectric microwave capacitors (varactors) based on BaxSr1−xTiO3 are stymied by the absence of suited compatible, very low resistive oxide electrode materials on the micrometer scale. Therefore, we start with the epitaxial growth of the exceptionally highly conducting isostructural perovskite SrMoO3 having a higher room-temperature conductivity than Pt. In high-frequency applications such as tunable filters and antennas, the desired electrode thickness is determined by the electromagnetic skin depth, which is of the order of several micrometers in the frequency range of a few gigahertz. Here, we report the pulsed laser deposition of a fully layer-by-layer grown epitaxial device stack, combining a several micrometers thick electrode of SrMoO3 with atomically engineered sharp interfaces to the substrate and to the subsequently grown functional dielectric layer. The difficult to achieve epitaxial thick film growth makes use of the extraordinary ability of perovskites to accommodate strain well beyond the critical thickness limit by adjusting their lattice constant with small shifts in the cation ratio, tuned by deposition parameters. We show that our approach, encompassing several orders of magnitude in film thickness scale whilst maintaining atomic layer control, enables the fabrication of metal-insulator-metal (MIM) varactors based on 50–100 nm thin BaxSr1−xTiO3 layers with high tunability above three at the Li-ion battery voltage level (3.7 V).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.