The net charge and isoelectric pH (pI) of a protein depend on the content of ionizable groups and their pK values. Ribonuclease Sa (RNase Sa) is an acidic protein with a pI ס 3.5 that contains no Lys residues. By replacing Asp and Glu residues on the surface of RNase Sa with Lys residues, we have created a 3K variant (D1K, D17K, E41K) with a pI ס 6.4 and a 5K variant (3K + D25K, E74K) with a pI ס 10.2. We show that pI values estimated using pK values based on model compound data can be in error by >1 pH unit, and suggest how the estimation can be improved. For RNase Sa and the 3K and 5K variants, the solubility, activity, and stability have been measured as a function of pH. We find that the pH of minimum solubility varies with the pI of the protein, but that the pH of maximum activity and the pH of maximum stability do not.
DNA gyrase is a major bacterial protein that is involved in replication and transcription and catalyzes the negative supercoiling of bacterial circular DNA. DNA gyrase is a known target for antibacterial agents since its blocking induces bacterial death. Quinolones, coumarins, and cyclothialidines have been designed to inhibit gyrase. Significant improvements can still be envisioned for a better coumarin-gyrase interaction. In this work, we obtained the crystal costructures of the natural coumarin clorobiocin and a synthetic analogue with the 24 kDa gyrase fragment. We used isothermal titration microcalorimetry and differential scanning calorimetry to obtain the thermodynamic parameters representative of the molecular interactions occurring during the binding process between coumarins and the 24 kDa gyrase fragment. We provide the first experimental evidence that clorobiocin binds gyrase with a stronger affinity than novobiocin. We also demonstrate the crucial role of both the hydroxybenzoate isopentenyl moiety and the 5'-alkyl group on the noviose of the coumarins in the binding affinity for gyrase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.