BackgroundPregnant women and infants under 6 months are at risk of influenza-related complications. Limited information exists on their community burden of respiratory viruses.Methods and FindingsThis prospective, observational open cohort study was conducted in Baganuur district, Ulaanbaatar, Mongolia during 2013/14 and 2014/15 influenza seasons. Influenza-like illness (ILI) and severe acute respiratory infection (sARI) were identified by follow-up calls twice a week. For those identified, influenza and respiratory syncytical virus (RSV) were tested by point-of-care test kits. We calculated overall and stratified (by trimester or age group) incidence rates (IR) and used Cox proportional hazard regression for risk factor analyses. Among 1260 unvaccinated pregnant women enrolled, overall IRs for ILI, sARI and influenza A were 11.8 (95% confidence interval (C.I):11.2–12.4), 0.1 (95%C.I:0.0–0.4), and 1.7 (95%C.I:1.5–1.9) per 1,000person-days, respectively. One sARI case was influenza A positive. IRs and adjusted hazard ratios (Adj.HR) for ILI and influenza A were lowest in the third trimester. Those with co-morbidity were 1.4 times more likely to develop ILI [Adj.HR:1.4 (95%C.I:1.1–1.9)]. Among 1304 infants enrolled, overall ILI and sARI IRs were 15.2 (95%C.I:14.5–15.8) and 20.5 (95%C.I:19.7–21.3) per 1,000person-days, respectively. From the tested ILI (77.6%) and sARI (30.6%) cases, the overall positivity rates were 6.3% (influenza A), 1.1% (influenza B) and 9.3% (RSV). Positivity rates of influenza A and RSV tend to increase with age. sARI cases were 1.4 times more likely to be male [Adj.HR:1.4 (95%C.I:1.1–1.8)]. Among all influenza A and RSV positive infants, 11.8% and 68.0% were respectively identified among sARI hospitalized cases.ConclusionWe observed low overall influenza A burden in both groups, though underestimation was likely due to point-of-care tests used. For infants, RSV burden was more significant than influenza A. These findings would be useful for establishing control strategies for both viruses in Mongolia.
BackgroundMongolia's Health Service began to conduct surveillance for influenza in the 1970s. This surveillance has become more comprehensive over time and now includes 155 sentinel sites in Mongolia. In this study, we analyzed the epidemiological characteristics and impact of influenza using data from influenza surveillance in Mongolia.Materials and methodsThe data were collected by the National Influenza Center, Mongolia (NIC). Incidence rates of influenza-like illness (ILI) and severe acute respiratory infections (sARI) were calculated as the proportion of the number of ILI and sARI cases to the total population in the studied areas. Nasopharyngeal samples were collected and tested using real-time reverse transcription polymerase chain reaction [(rt)-RT-PCR]. Selected samples negative for influenza were tested for other respiratory pathogens by multiplex rt-RT-PCR.ResultsAverages of 14·0 ILI and 0·8 sARI episodes per 100 population per year were observed during the five influenza seasons. The highest incidences of influenza associated with ILI and sARI were observed among children 0–4 years old. The number of ILI cases showed a clear seasonality, generally peaking between December and February. In contrast, sARI incidence peaked twice during each season. Influenza B was most prevalent during 2007–2008 and 2011–2012, influenza A (H3N2) during 2010–2011, seasonal A (H1N1) during 2008–2009, and A (H1N1) pdm09 during 2009–2010.ConclusionsAdditional data on the epidemiology and impact of influenza including socioeconomic impact and vaccine effectiveness are required to develop a national influenza control policy, including a vaccination strategy. Our results provide useful data for developing such a policy.
BackgroundKnowledge of how influenza viruses spread in a community is important for planning and implementation of effective interventions, including social distancing measures. Households and schools are implicated as the major sites for influenza virus transmission. However, the overall picture of community transmission is not well defined during actual outbreaks. We conducted a community-based prospective cohort study to describe the transmission characteristics of influenza in Mongolia.Methods and FindingsA total of 5,655 residents in 1,343 households were included in this cohort study. An active search for cases of influenza-like illness (ILI) was performed between October 2010 and April 2011. Data collected during a community outbreak of influenza A(H3N2) were analyzed. Total 282 ILI cases occurred during this period, and 73% of the subjects were aged <15 years. The highest attack rate (20.4%) was in those aged 1–4 years, whereas the attack rate in those aged 5–9 years was 10.8%. Fifty-one secondary cases occurred among 900 household contacts from 43 households (43 index cases), giving an overall crude household secondary attack rate (SAR) of 5.7%. SAR was significantly higher in younger household contacts (relative risk for those aged <1 year: 9.90, 1–4 years: 5.59, and 5–9 years: 6.43). We analyzed the transmission patterns among households and a community and repeated transmissions were detected between households, preschools, and schools. Children aged 1–4 years played an important role in influenza transmission in households and in the community at large. Working-age adults were also a source of influenza in households, whereas elderly cases (aged ≥65 years) had no link with household transmission.ConclusionsRepeated transmissions between households, preschools, and schools were observed during an influenza A(H3N2) outbreak period in Mongolia, where subjects aged 1–4 years played an important role in influenza transmission.
Please cite this paper as: Burmaa et al. (2012) Cumulative incidence of pandemic influenza A (H1N1) 2009 by a community‐based serological cohort study in Selenghe Province, Mongolia. Influenza and Other Respiratory Viruses 6(601), e97–e104. Background Large community outbreaks of pandemic A (H1N1) 2009 occurred between October and December 2009 in Mongolia. A serological study was conducted among the general population by testing paired sera collected before and after the first wave of pandemic in Selenghe province, Mongolia. None of the study participants had been vaccinated for pandemic A (H1N1) 2009 before the second samples were collected. Objective The objective of this study was to estimate cumulative incidence of pandemic A (H1N1) 2009 in different age‐groups of Selenghe province residents. Methods After informed consent was obtained from apparently healthy volunteers, the paired sera and background information were collected. Antibody titers were measured using hemagglutinin inhibition (HI) and microneutralization (MN) assays for A/California/07/2009pdm. A fourfold rise in antibody titers was regarded as the evidence of infection. Results The overall cumulative incidences in the study group for all ages were 28·8% (76/264) by HI, 35·2% (93/264) by MN, and 25·0% (66/264) by both HI and MN. Cumulative incidences of infection varied among age‐groups, with children aged 2–4 and 5–9 years having high cumulative incidence of infection. Overall cumulative incidences of infection in the whole population were estimated to be 23·0% (4946/21 460) by HI, 30·2% (6473/21 460) by MN, and 18·8% (4036/21 460) by both HI and MN. Conclusions This study indicates that about one‐fourth of the total population in Selenghe province was infected with pandemic A (H1N1) 2009 virus during the first wave of the pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.