Abstract. Anatomical structure segmentation on computed tomography (CT) is the key stage in medical visualization and computer diagnosis. Tumors are one of types of internal structures, for which the problem of automatic segmentation today has no solution fully satisfying by quality. The reason is high variance of tumor's density and inability of using a priori anatomical information about shape. In this paper we propose automatic method of liver tumors segmentation based on convolution neural nets (CNN). Studying and validation have been performed on set of CT with liver and tumors segmentation ground truth. Average error (VOE) by cross-validation is 17.3%. Also there were considered algorithms of pre-and post-processing which increase accuracy and performance of segmentation procedure. Particularly the acceleration of the segmentation procedure with negligible decrease of quality has been reached 6 times.
Anatomical structure segmentation on computed tomography (CT) is the key stage in medical visualization and computer diagnosis. Tumors are one of types of internal structures, for which the problem of automatic segmentation today has no solution fully satisfying by quality. The reason is high variance of tumor’s density and inability of using a priori anatomical information about shape. In this paper we propose automatic method of liver tumors segmentation based on convolution neural nets (CNN). Studying and validation have been performed on set of CT with liver and tumors segmentation ground truth. Average error (VOE) by cross-validation is 17.3%. Also there were considered algorithms of pre- and post-processing which increase accuracy and performance of segmentation procedure. Particularly the acceleration of the segmentation procedure with negligible decrease of quality has been reached 6 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.