Nowadays, people get increasingly attached to social media to connect with other people, to study, and to work. The presented article uses Twitter posts to better understand public opinion regarding the vegan (plant-based) diet that has traditionally been portrayed negatively on social media. However, in recent years, studies on health benefits, COVID-19, and global warming have increased the awareness of plant-based diets. The study employs a dataset derived from a collection of vegan-related tweets and uses a sentiment analysis technique for identifying the emotions represented in them. The purpose of sentiment analysis is to determine whether a piece of text (tweet in our case) conveys a negative or positive viewpoint. We use the mutual information approach to perform feature selection in this study. We chose this method because it is suitable for mining the complicated features from vegan tweets and extracting users’ feelings and emotions. The results revealed that the vegan diet is becoming more popular and is currently framed more positively than in previous years. However, the emotions of fear were mostly strong throughout the period, which is in sharp contrast to other types of emotions. Our findings place new information in the public domain, which has significant implications. The article provides evidence that the vegan trend is growing and new insights into the key emotions associated with this growth from 2010 to 2022. By gaining a deeper understanding of the public perception of veganism, medical experts can create appropriate health programs and encourage more people to stick to a healthy vegan diet. These results can be used to devise appropriate government action plans to promote healthy veganism and reduce the associated emotion of fear.
Diabetic retinopathy is a common complication of diabetes, that affects blood vessels in the light-sensitive tissue called the retina. It is the most common cause of vision loss among people with diabetes and the leading cause of vision impairment and blindness among working-age adults. Recent progress in the use of automated systems for diabetic retinopathy diagnostics has offered new challenges for the industry, namely the search for a less resource-intensive architecture, e.g., for the development of low-cost embedded software. This paper proposes a comparison between two widely used conventional architectures (DenseNet, ResNet) with the new optimized one (EfficientNet). The proposed methods classify the retinal image as one of 5 class cases based on the dataset obtained from the 4th Asia Pacific Tele-Ophthalmology Society (APTOS) Symposium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.